
Fundamental Methods Practice

A Student has a name, id, and birthday as shown in this UML Class Diagram.

1. Complete the class declaration, and declare the attributes of a Student

 import _____________________;

 _____________ _____________ Student {

 _______________ _____________________________ ;

 _______________ _____________________________ ;

 _______________ _____________________________ ;

2. Write an accessor method for the Student's name attribute.

public ___________ _______________() {

}

3. Write an mutator method for the Student's name attribute. Do not accept a new name (the parameter) if
it is null or an empty string. In that case, do nothing (better solution is to throw an Exception, which we
haven't studied yet.)

public ___________ _______________ (String _______________) {

}

4. Write a constructor so that we can initialize students like this:

Long id = 5810123456L;

Student pee = new Student("Pirawat", id);

- 1 -

Student

-id: long
-name: String
-birthday: java.util.Date

Student(name: String, id: long)
+getName(): String
+setName(newname: String)
+getBirtdhday(): Date
+setBirthday(year: int, month: int,
 day: int)

Fundamental Methods Practice

5. Write an equals method that returns true of two students have the same id. Complete the Javadoc.

Use the 4-step pattern for equals: 1) test if parameter is null, 2) test parameter reference is same type as
this object (x.getClass(), 3) cast the parameter to a reference of type Student, 4) compare attributes as
required. Also complete the Javadoc.

/**
 * Test if two students are equal.
 * ___________ obj is another object to compare to this one
 * ___________ true iff obj is a Student with same id as this Student
 */
public boolean equals(Object obj) {

 __;

 __;

 __;

 __;

 __;
}

6. Correct this toString method. Write your changes in the code.

/** Return a string representation, such as "Cat [5610541234]" */

public void toString() {

System.out.println(this.name + " [" + this.id + "]");

}

7. Our Student class has a birthday attribute with "get" and "set" methods:

public class Student {

 private Date birthday;

 /** Get the student's birthday. */

 public Date getBirthday() {

 return this.birthday;

 }

 /** Set the student's birthday. */

 public void setBirthday(int year, int month, int day) {

 // Date constructor is weird.

 // year value is year-1900, e.g. Year 2000 is 100

 // month value is 0=January, 1=February, ..., 12=Decemeber

 this.birthday = new Date(year-1900, month-1, day);

 }

However, Java discourages the use of the Date class and recommends using LocalDate instead.

We cannot change the method signatures for getBirthday() and setBirthday() because other classes are
using those methods! "Method signature" means how the method appears: its name, parameters, visibility,
and return type.

- 2 -

Fundamental Methods Practice

Fortunately, our code encapsulates and hides the birthday attribute.

Therefore, we can change the internal implementation as long as we don't change the method signatures.

Modify the code so that the Student's birthday is a java.time.LocalDate instead of Date.

a) modify getBirtthday() to create a new Date object and return it. LocalDate has these methods:

 getYear() returns the year

 getMonthValue() returns the month as an integer. 1 = January, 12 = December

 getDayOfMonth() returns the day of the month

 Use these methods to create a new Date object and return it.

b) modify setBirthday() so that it updates birthday as a LocalDate object instead of Date.

 LocalDate has a factory method to create a new object: LocalDate.of(year, month, day)

Write your solution in BlueJ first so you get the syntax correct; then write it here:

import java.util.Date;

import java.time.LocalDate;

public class Student {

 private LocalDate birthday;

 /** Get the student's birthday. */

 public Date getBirthday() {

 }

 /** Set the student's birthday.

 * @param year is the year of birth, e.g. 2001.

 * @param month is the birth month, 1=January, .., 12=December.

 * @param day is the day of the month.

 */

 public void setBirthday(int year, int month, int day) {

 }

- 3 -

Fundamental Methods Practice

8. For each item in the left column, identify the kind of thing is represents using items in the right column.

char

Character

List

System

java.lang

java.lang.System

length() in "Harry".length()

org.junit

java.lang.Math.PI

java.lang.Math.sqrt()

System.in

System.in.read()

LocalDate.now()

next() in Scanner class

attribute of an object

class

instance method

interface

package

primitive type

static attribute (attribute of a class)

static constant

static (class) method

variable name

9. Which package contains each of these classes?

The choices are java.io, java.lang, java.time, and java.util.

____________ InputStream

____________ File

____________ PrintStream

____________ Math

____________ Double

____________ String

____________ Collections

____________ ArrayList

____________ Date

____________ LocalDate

____________ Runnable

____________ System

- 4 -

Fundamental Methods Practice

10. Name the interface that defines these methods. If more than one possible interface, choose the interface
at the base of an interface hierarchy.

run()

hasNext()
next()
remove()

compareTo(T other)

add(T obj)
contains(T obj)
remove(T obj)
size()

add(T obj)
contains(T obj)
get(int index)
remove(int index)
size()

11. Name the exception that is thrown by each of these:

String[] animals = {"cat", "dog"};
System.out.println(animals[2]);

List<String> list =
 Arrays.asList(animals);
// set replaces an existing element
list.set(2, "bat");

InputStream in = new
 FileInputStream("does not exist");
int c = in.read();

// use Scanner to parse a string
Scanner s = new Scanner("hi there");
s.next(); // "hi"
s.next(); // "there"
s.next(); // ?

int n = 7/8;
int m = 1/n;

- 5 -

Fundamental Methods Practice

// Integer & Double extend Number
Number n = new Integer(10);
Double d = (Double) n;

12. Write example code that will throw a NullPointerException, using at most 3 statements. Use
only classes in the Java API.

13. Write example code that clearly shows polymorphism being used. Use only classes in the Java API, and
indicate where in your code shows polymorphism occurring. It must be something that we can type into
jshell and run (no credit if it doesn't work). Please make the example short -- no longer than 5 statements.

14. Its important to know some commonly used classes for any programming language. Otherwise, you
waste a lot of time trying to find something you need or (worse) writing code for something the language
API already provides.

Name each of these Java classes.

Provides access to operating system resources, such as
environment variables, console input, and output to the
console.

Utility methods for working with collections, including
sorting and searching. Can also reverse the order of a list
or create an immutable view of an existing List.

Utilities methods for working with arrays, including
sorting, searching, copying arrays, and filling an array
with a constant value.

Common mathematical functions like square root.

A wrapper to encapsulate a double as an object. Also has
constants for the smallest and largest possible values,
Infinity, and a method to get a double value from a String.

A mutable string type that you can append to, modify its
contents, etc. Useful for building or editing Strings.

A class that lets an application break a String into tokens
(words), but not Scanner. This class is much faster than
scanner for splitting a String into tokens.

- 6 -

