
ArrayIterator Page 1

Assignment 1. Write a class named ArrayIterator that implements the Iterator interface and
iterates over elements in an array, but skips null elements in the array.
2. Include a type parameter <T> in the class.
3. Use the package ku.util for your code.

What to Submit 1. Create a repository by accepting assignment on Github Classroom. The URL
is in the announcement on Google Classroom.
2. Clone the repository. Add your own README.md and .gitignore.
3. Submit your source code in the "ku/util" directory. Push to Github.

Individual Work This is an individual assignment. Do not ask other students for help or share
code. If you need help, please ask the TAs or instructor.

Iterators

Many collections and data structures provide an Iterator so we can iterate over all the elements in the
collection without knowing the structure of the collection.

In Java, an Iterator is any object that implements the java.util.Iterator interface. This interface has a
type parameter that specifies the type of element the Iterator returns.

Iterator Interface in Java

The java.util.Iterator interface has 3 methods. The interface has a type parameter (usually
shown as "T" or "E"). If you omit the type parameter, the default value is Object. Here are the 3
methods (shown with and without type parameter):

Type parameter T No type parameter Meaning

T next() Object next() Return the next non-null element in the array.
If there are no more elements, it throws
NoSuchElementException.

boolean hasNext() boolean hasNext() Returns true if next() can return another non-
null array element, false if no more elements.

void remove() void remove() (Optional) Not used in ArrayIterator

Example:

Scanner is a String Iterator. The Java API doc for Scanner states that Scanner implements
Iterator<String>. This means that next() will return a String. For example:

Scanner input = new Scanner("Iterating is easy!");
while(input.hasNext()) {
 String s = input.next();

System.out.println(s);
}

Iterating
is
easy!

Assignment

Arrays don't have an Iterator, but it would be useful to have one. Write an ArrayIterator class in the
package ku.util that provides an Iterator for any array.

For convenience, we will design the Arrayiterator so it skips null elements in the array.
- 1 -

ArrayIterator Page 2

1. Write a class named ArrayIterator that implements java.util.Iterator.

2. Use a type parameter in the class declaration and next method. Declare the class like this:

public class ArrayIterator<T> implements Iterator<T>

T is a type parameter, which is a placeholder for the name of a class or Interface.

3. When we create an ArrayIterator object, the value of the type parameter should match the type of
values in the array. For an array of Student objects we would write:
"new ArrayIterator<Student>(students)".

Define ArrayIterator like this. The "T" means the type of object that the next() method returns.

package ku.util;

//TODO write good Javadoc

public class ArrayIterator<T> implements Iterator<T> {
 private T[] array;
 //TODO: define any other variables you need (a cursor)
 /**
 * Initialize a new array iterator with the array to process.
 * @param array is the array to iterate over
 */
 public ArrayIterator(T[] array) {
 this.array = array;
 }

 /**
 * @see java.util.Iterator#next()
 */
 @Override
 public T next() {

 }

 @Override
 public boolean hasNext() ...
}

4. The constructor has a parameter that is an array of type T. In Java, you can use a type parameter just
like a class name (except that you cannot create "new" objects using a type parameter, e.g. "new T()").

5. ArrayIterator may not use any Java collections (like ArrayList). ArrayIterator needs only a reference
to the array and a variable to keep track of the next element it should return..

6. The next() and hasNext() methods should skip null values (see example below).

7. Do not expect the user to always call hasNext() before next(). He may not call hasNext() at all, or call
it many times consecutively.

8. If the user calls next() when there are no more elements, next throws a NoSuchElementException.
Here is how to throw an exception:

 throw new NoSuchElementException("No more elements");

The code immediately exits when you throw an exception, so there is no "return" after you throw an
exception.

- 2 -

ArrayIterator Page 3

remove() method

This method is optional. You can leave the remove() method empty or omit it.

Class Diagram for ArrayIterator

Programming Notes

1. An Iterator needs a variable (often called the cursor) to remember its position. Initially the cursor
points to the first element. hasNext() checks if the cursor points to a valid element. If it is not valid,
hasNext should advance the cursor to a valid element. Each time next is called, the Iterator returns the
current element and increments the cursor by 1.

(a) new ArrayIterator (b) after next() is invoked (c) after next() is invoked again

2. The hasNext method does most of the work! It is the job of hasNext to decide if there is another
element available and move the cursor to the location of the next non-null element.

3. Don't write duplicate logic! The next method should ask hasNext if there is another element, and let
hasNext do the work of moving the cursor. Don't copy the hasNext logic into the next method.

4. It is legal for the user to call hasNext() many times consecutively without calling next. The iterator
must not skip any elements if the user does this!

iterator.hasNext();
iterator.hasNext(); // no change. Duplicate calls to hasNext do not change the iterator.
iterator.hasNext(); // no change, again.

5. It is also legal for the user to call next without calling hasNext. Therefore, you must not assume the
user will always call hasNext before calling next.

6. To throw an Exception, simply write: throw new NoSuchElementException("message").
Throwing an exception causes an immediate return from the method. Don't write return after throw. For
example:

if (no more elements) {
 throw new NoSuchElementException("No more elements");
}

Example using BlueJ Interactive Mode
> String [] array = { "apple", "banana", null, "carrot", null };
> ArrayIterator<String> iter = new ArrayIterator(array);
> iter.next() // User not required to call hasNext() before next()

- 3 -

cursor =

array =

«interface»
java.util.Iterator

+ hasNext() : boolean
+ next() : T
+ remove() : void

ArrayIterator

- array : T[]

+ ArrayIterator(array: T[])
+ hasNext(): boolean
+ next(): T
+ remove(): void

T
implements

ArrayIterator Page 4

"apple"
> iter.hasNext()
true
> iter.hasNext() // User can call hasNext many times
true
> iter.next()
"banana"
> iter.next()
"carrot" // iterator skips the null element in array
> iter.hasNext()
false // iterator skips the null element in array
iter.next() // no more elements, so an exception is thrown
java.util.NoSuchElementException at ArrayIterator:xx

Example using an empty array:

> Object [] array = new Object[1]; // array containing null
> ArrayIterator it = new ArrayIterator(array);
> it.hasNext()
false
> it.next()
java.util.NoSuchElementException at ArrayIterator:xx

Testing

You should test your code!

Test at least 3 kinds of situations:

Test Case Array used in new ArrayIterator() to text next() and hasNext()

Edge Case 1. Empty array
String[] array = { };
2. Array of size 1 containing either data or null.
String[] array = { "only one" };
String[] array2 = { null };

Typical Case 1. Array with all data.
Number[] array = { new Integer(1), new Double(2), new Long(3) };
2. Array with some nulls at start or end.
String[] array = { null, "second", "third" };
String[] array2 = { "first", "second", "third", null, null, null };
3. Array with data and nulls mixed together
String[] array = { "first", null, "second", null, null, "last" };

Extreme Case 1. Array with all null.
String[] empty = new String[100]; // hasNext() should return false
1. Big array with one non-null element somewhere.
String[] array = new String[100};
array[1] = "first";
array[50] = "middle";

- 4 -

	Iterators
	Iterator Interface in Java
	Example:
	Assignment
	remove() method

	Class Diagram for ArrayIterator
	Programming Notes
	Example using BlueJ Interactive Mode

	Testing

