
Chapter 3

Class Diagrams :
The Essentials

If someone were to come up to you in a dark alley and say, "Psst, wanna see a
UML diagram?" that diagram would probably be a dass diagram. The majority
of UML diagrams 1 see are dass diagrams .

The dass diagram is not only widely used but also subject to the greatest
range of modeling concepts . Although the basic elements are needed by every-
one, the advanced concepts are used less often . Therefore, I've broken my dis-
cussion of dass diagrams into two parts: the essentials (this chapter) and the
advanced (Chapter 5) .

A dass diagram describes the types of objects in the System and the various
kinds of static relationships that exist among them . Class diagrams also show
the properties and operations of a Class and the constraints that apply to the
way objects are connected . The UML uses the term feature as a general term
that covers properties and operations of a Class .

Figure 3 .1 shows a simple dass model that would not surprise anyone who
has worked with order processing. The boxes in the diagram are classes, which
are divided into three compartments : the name of the dass (in bold), its
attributes, and its operations . Figure 3.1 also shows two kinds of relationships
between classes : associations and generalizations .

Properties

Properties represent structural features of a Class . As a first approximation, you
can think of properties as corresponding to fields in a Class . The reality is rather
involved, as we shall see, but that's a reasonable place to start .

3 .S



CHAPTER 3 CLAss DIAGRAMS: THE ESSENTIALS

dateReceived : Date[0 . .1 ]
isPrepaid : Boolean[1]
number : String [1]
price : Money

dispatch
dose

rote name

lineltems

	

* {ordered}
	v	

Order Line

quantity : Integer
price : Money

Order

navigabte

Product

Figure 3 .1 A simple dass diagram

association

constraint

attributes

operations

{if Order.customer.getCreditRating is
"poor" then Order.isPrepaid must be
true}

contactName
creditRating
creditLimit

billForMonth(Integer)
remind()

salesRep V 0 . .1

Employee

name [11
address [0 . .1]

getCreditRatingo : String

generalization

Corporate Customer

Customer

A

Clans

Personal Customer

creditCardNumber

{getCreditRating() == "poor"}

Properties are a single concept, but they appear in two quite distinct nota-
tions: attributes and associations . Although they look quite different an a dia-
gram, they are really the same thing .

Attributes

The attribute notation describes a property as a line of text within the dass box
itself . The full form of an attribute is :

visibility name : type multiplicity = default {property-string}



An example of this is :

- name : String [1] = " Untitled" {readOnly}

Only the name is necessary .

•

	

This vi si bi l i ty marker indicates whether the attribute is public (+) or pri-
vate (-) ; I'll discuss other visibilities an page 83 .

•

	

The name of the attribute-how the dass refers to the attribute-roughly
corresponds to the name of a field in a programming language .

• The type of the attribute indicates a restriction an what kind of object may
be placed in the attribute . You can think of this as the type of a field in a
programming language .

•

	

I'll explain mul ti pl i ci ty an page 38 .

•

	

The default value is the value for a newly created object if the attribute isn't
specified during creation .

• The {property-string} allows you to indicate additional properties for the
attribute. In the example, 1 used {readOnly} to indicate that clients may not
modify the property. If this is missing, you can usually assume that the
attribute is modifiable . I'11 describe other property strings as we go .

Associations

The other way to notate a property is as an association . Much of the same
information that you can show an an attribute appears an an association . Fig-
ures 3.2 and 3.3 show the Same properties represented in the two different
notations .

An association is a solid line between two classes, directed from the source
dass to the target dass . The name of the property goes at the target end of the

Order

+dateReceived :Date [0 . .1]
+ isPrepaid : Boolean [1]
+ lineltems : OrderLine [*] {ordered}

Figure 3 . 2 Showing properties o f an order as attributes

PROPERTIES



3S CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

Date
+ dateReceived

source

target

Order

OrderLine

Figure 3 .3 Showing properties of an order as associations

association, together with its multiplicity . The target end of the association
links to the dass that is the type of the property .

Although most of the same information appears in both notations, some
items are different. In particular, associations can show multiplicities at both
ends of the line .

With two notations for the same thing, the obvious question is, Why should
you use one or the other? In general, 1 tend to use attributes for Small things,
such as dates or Booleans-in general, value types (page 73)-and associations
for more significant classes, such as customers and orders . 1 also tend to prefer
to use dass boxes for classes that are significant for the diagram, which leads to
using associations, and attributes for things less important for that diagram .
The choice is much more about emphasis than about any underlying meaning .

lineltems
{ordered}

+ isPrepaid

1
Boolean

Multiplicity

The multiplicity of a property is an indication of how many objects may fill the
property. The most common multiplicities you will see are

•

	

1 (An order must have exactly one customer .)

•

	

0 ..1 (A corporate customer may or may not have a single sales rep .)

•

		

(A customer need not place an Order and there is no upper limit to the
number of Orders a Customer may place-zero or more orders .)

More generally, multiplicities are defined with a lower bound and an upper
bound, such as 2 ..4 for players of a game of canasta . The lower bound may be



PROGRAMMING INTERPRETATION OF PROPERTIES

any positive number or zero ; the upper is any positive number or (for unlim-
ited) . If the lower and upper bounds are the same, you can use one number ;
hence, 1 is equivalent to 1 . .1 . Because it's a common case, * is short for 0 . ." .

In attributes, you come across various terms that refer to the multiplicity.

•

	

Optional implies a lower bound of 0 .

•

	

Mandatory implies a lower bound of 1 or possibly more .

•

	

Single-valued implies an upper bound of 1 .

•

	

Multivalued implies an upper bound of more than 1 : usually '~ .

If 1 have a multivalued property, 1 prefer to use a plural form for its name .
By default, the elements in a multivalued multiplicity form a set, so if you ask

a customer for its orders, they do not come back in any order . If the ordering of
the orders in association has meaning, you need to add {ordered} to the associa-
tion end . If you want to allow duplicates, add {nonunique} . (If you want to explic-
itly show the default, you can use {unordered} and {unique} .) You may also see
collection-oriented names, such as {bag} for unordered, nonunique .

UML 1 allowed discontinuous multiplicities, such as 2, 4 (meaning 2 or 4, as
in cars in the days before minivans) . Discontinuous multiplicities weren't very
common and UML 2 removed them .

The default multiplicity of an attribute is [1] . Although this is true in the
meta-model, you can't assume that an attribute in a diagram that's missing a
multiplicity has a value of [1], as the diagram may be suppressing the multiplic-
ity information. As a result, 1 prefer to explicitly state a [1] multiplicity if it's
important .

Programming Interpretation of Properties

As with anything else in the UML, there's no one way to interpret properties in
code. The most common software representation is that of a field or property of
your programming language . So the Order Line class from Figure 3 .1 would
correspond to something like the following in Java :

public class OrderLine . . .

private int quantity ;

private Money price ;

private Order order ;

private Product product

39



CHAPTER 3 CLAss DIAGRAMS : THE ESSENTIALS

In a language like C#, which has properties, it would correspond to :

public dass OrderLine . . .

public int Quantity ;

public Money Price ;

public Order Order ;

public Product Product ;

Note that an attribute typically corresponds to public properties in a lan-
guage that supports properties but to private fields in a language that does not .
In a language without properties, you may see the fields exposed through acces-
sor (getting and setting) methods . A read-only attribute will have no setting
method (with fields) or set action (for properties) . Note that if you don't give a
name for a property, it's common to use the name of the target dass .

Using private fields is a very implementation-focused interpretation of the
diagram. A more interface-oriented interpretation might instead concentrate an
the getting methods rather than the underlying data. In this case, we might see
the Order Line's attributes corresponding to the following methods :

public dass OrderLine . . .

private int quantity ;

private Product product ;

public int getQuantity Q {

return quantity ;

public void setQuantity(int quantity) {

this .quantity = quantity ;

public Money getPrice Q {

return product .getPrice Q .multiply(quantity) ;

In this case, there is no data field for price ; instead, it's a computed value . But
as far as clients of the Order Line dass are concerned, it looks the Same as a
field . Clients can't teil what is a field and what is computed . This information
hiding is the essence of encapsulation .

If an attribute is multivalued, this implies that the data concerned is a collec-
tion. So an Order dass would refer to a collection of Order Lines . Because this
multiplicity is ordered, that collection must be ordered, (such as a List in Java or
an Wist in .NET). If the collection is unordered, it should, strictly, have no mean-
ingful order and thus be implemented with a set, but most people implement
unordered attributes as lists as well . Some people use arrays, but the UML implies
an unlimited upper bound, so 1 almost always use a collection for data structure .

Multivalued properties yield a different kind of interface to single-valued
properties (in Java) :



class Order {

private Set lineItems = new HashSet() ;

public Set getLineItems() {

return Collections .unmodifiableSet(lineltems) ;

public void addLineltem (Orderltem arg) {

lineltems .add (arg) ;

public void removeLineltem (Orderltem arg) {

lineltems .remove(arg) ;

In most cases, you don't assign to a multivalued property ; instead, you
update with add and remove methods. In order to control its Line Items prop-
erty, the order must control membership of that collection ; as a result, it
shouldn't pass out the naked collection . In this case, 1 used a protection proxy
to provide a read-only wrapper to the collection . You can also provide a nonup-
datable iterator or make a copy. It's okay for clients to modify the member
objects, but the clients shouldn't directly change the collection itself .

Because multivalued attributes imply collections, you almost never see col-
lection classes an a dass diagram . You would show them only in very low level
implementation diagrams of collections themselves .

You should be very afraid of classes that are nothing but a collection of fields
and their accessors. Object-oriented design is about providing objects that are
able to do rich behavior, so they shouldn't be simply providing data to other
objects . If you are making repeated calls for data by using accessors, that's a
sign that some behavior should be moved to the object that has the data .

These examples also reinforce the fact that there is no hard-and-fast corre-
spondence between the UML and code, yet there is a similarity . Within a project
team, team conventions will lead to a closer correspondence .

Whether a property is implemented as a field or as a calculated value, it rep-
resents something an object can always provide . You shouldn't use a property
to model a transient relationship, such as an object that is passed as a parame-
ter during a method call and used only within the confines of that interaction .

Bidirectional Associations

The associations we've looked at so far are called unidirectional associations .
Another common kind of association is a bidirectional association, such as
Figure 3 .4 .

BIDIRECTIONAL AssocIATIONS

Iv



CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

Person

Person

owner

0 . .1

Figure 3.4 A bidirectional association

A bidirectional association is a pair of properties that are linked together as
inverses. The Car dass has property owner :Person[1], and the Person dass has a
property cars :Car[*] . (Note how 1 named the Cars property in the plural form of
the property's type, a common but non-normative convention . )

The inverse link between them implies that if you follow both properties,
you should get back to a set that contains your starting point . For example, if 1
begin with a particular MG Midget, find its owner, and then look at its owner's
cars, that set should contain the Midget that 1 started from .

As an alternative to labeling an association by a property, many people, par-
ticularly if they have a data-modeling background, like to label an association
by using a verb phrase (Figure 3 .5) so that the relationship can be used in a sen-
tence. This is legal and you can add an arrow to the association to avoid ambi-
guity. Most object modelers prefer to use a property name, as that corresponds
better to responsibilities and operations .

Some people name every association in some way . 1 choose to name an asso-
ciation only when doing so improves understanding . I've Seen too many associ-
ations with such names as "has" or "is related to ."

In Figure 3 .4, the bidirectional nature of the association is made obvious by
the navigability a_rrows at both ends of the association . Figure 3.5 has no
arrows; the UML allows you to use this form either to indicate a bidirectional
association or when you aren't showing navigability . My preference is to use
the double-headed arrow of Figure 3 .4 when you want to make it clear that you
have a bidirectional association .

Implementing a bidirectional association in a programming language is
often a little tricky because you have to be sure that both properties are kept

Owns

Figure 3.5 Using a verb phrase to name an association

Car

Car



synchronized. Using C#, 1 use code along these lines to implement a bidirec-
tional association :

class Car . . .

public Person Owner {

get {return owner ;}

set {

if (owner != null) _owner .friendCars Q .Remove(this) ;

_owner = value ;

if (owner != null) _owner .friendCars Q .Add(this) ;

private Person owner ;

dass Person . . .

public IList Cars {

get {return ArrayList .ReadOnly(_cars) ;}

public void AddCar(Car arg) {

arg .Owner = this ;

private IList _cars = new ArrayList Q ;

internal IList friendCars Q {

//should only be used by Car .Owner

return _cars ;

The primary thing is to let one side of the association-a single-valued side,
if possible-control the relationship . For this to work, the slave end (Person)
needs to leak the encapsulation of its data to the master end . This adds to the
slave dass an awkward method, which shouldn't really be there, unless the lan-
guage has fine-grained access control. I've used the naming convention of
"friend" here as a nod to C++, where the master's setter would indeed be a
friend. Like much property code, this is pretty boilerplate stuff, which is why
many people prefer to use some form of code generation to produce it .

In conceptual models, navigability isn't an important issue, so 1 don't show
any navigability arrows an conceptual models .

OPERATIONS

Operations
Operations are the actions that a dass knows to carry out . Operations most
obviously correspond to the methods an a dass . Normally, you don't show

'V



CHAPTER 3 CLAss DIAGRAMS: THE ESSENTIALS

those operations that simply manipulate properties, because they can usually be
inferred .

The full UML Syntax for operations is :

visibility name (parameter-list) : return-type {property-string}

•

	

This vi si bi 1 i ty marker is public (+) or private (-) ; others an page 83 .

•

	

The narre is a string .

•

	

The parameter-l ist is the list of parameters for the operation .

•

	

The return-type is the type of the returned value, if there is one .

•

	

The property-string indicates property values that apply to the given
Operation .

The parameters in the parameter list are notated in a similar way to
attributes . The form is :

direction name : type = default value

•

	

The narre, type, and default value are the same as for attributes .

•

	

The direction indicates whether the parameter is input (in), output (out) or
both (inout) . If no direction is shown, it's assumed to be in .

An example operation an account might be :

+ balance0n (date : Date) : Money

With conceptual models, you shouldn't use operations to specify the Inter-
face of a class . Instead, use them to indicate the principal responsibilities of that
class, perhaps using a couple of words summarizing a CRC responsibility
(page 65) .

1 often find it useful to distinguish between operations that change the state of
the system and those that don't . UML defines a query as an operation that gets a
value from a dass without changing the system state-in other words, without
side effects . You can mark such an Operation with the property string {query} . 1

refer to operations that do change state as modifiers, also called commands .
Strictly, the difference between query and modifiers is whether they change

the observable state [Meyer] . The observable state is what can be perceived
from the outside . An Operation that updates a cache would alter the internal
state but would have no effect that's observable from the outside .

1 find it helpful to highlight queries, as you can change the order of execution
of queries and not change the system behavior. A common convention is to try



GENERALIZATION

to write operations so that modifiers do not return a value ; that way, you can
rely an the fact that operations that return a value are queries . [Meyer] refers to
this as the Command-Query separation principle . It's sometimes awkward to
do this all the time, but you should do it as much as you can .

Other terms you sometimes see are getting methods and setting methods . A
getting method returns a value from a field (and does nothing else) . A setting
method puts a value into a field (and does nothing else) . From the outside, a cli-
ent should not be able to teil whether a query is a getting method or a modifier
is a setting method . Knowledge of getting and setting methods is entirely inter-
nal to the class .

Another distinction is between operation and method . An operation is some-
thing that is invoked an an object-the procedure declaration-whereas a
method is the body of a procedure . The two are different when you have poly-
morphism. If you have a supertype with three subtypes, each of which overrides
the supertype's getPrice operation, you have one operation and four methods
that implement it .

People usually use the terms operation and method interchangeably, but
there are times when lt is useful to be precise about the difference .

Generalization

A typical example of generalization involves the personal and corporate cus-
tomers of a business . They have differences but also many similarities . The sim-
ilarities can be placed in a general Customer class (the Supertype), with Personal
Customer and Corporate Customer as subtypes .

This phenomenon is also subject to various interpretations at the various
perspectives of modeling . Conceptually, we can say that Corporate Customer is
a subtype of Customer if all instances of Corporate Customer are also, by defi-
nition, instances of Customer . A Corporate Customer is then a special kind of
Customer. The key idea is that everything we say about a Customer-associa-
tions, attributes, operations-is true also for a Corporate Customer.

With a software perspective, the obvious interpretation is inheritance : The
Corporate Customer is a subclass of Customer . In mainstream 00 languages,
the subclass inherits all the features of the superclass and may override any
superclass methods .

An important principle of using inheritance effectively is substitutability. 1
should be able to substitute a Corporate Customer within any Code that requires

y



CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

a Customer, and everything should work fine . Essentially, this means that if 1
write code assuming 1 have a Customer, 1 can freely use any subtype of Cus-
tomer. The Corporate Customer may respond to certain commands differently
from another Customer, using polymorphism, but the caller should not need to
worry about the difference . (For more an this, see the Liskov Substitution Princi-
ple (LSP) in [Martin] .)

Although inheritance is a powerful mechanism, it brings in a lot of baggage
that isn't always needed to achieve substitutability . A good example of this was in
the early days of Java, when many people didn't like the implementation of the
built-in Vector dass and wanted to replace it with something lighter. However,
the only way they could produce a dass that was substitutable for Vector was to
subclass it, and that meant inheriting a lot of unwanted data and behavior .

Many other mechanisms can be used to provide substitutable classes . As a
result, many people like to differentiate between subtyping, or interface inherit-
ance, and subclassing, or implementation inheritance . A dass is a subtype if it is
substitutable for its supertype, whether or not it uses inheritance . Subclassing is
used as a synonym for regular inheritance .

Many other mechanisms are available that allow you to have subtyping
without subclassing . Examples are implementing an interface (page 69) and
many of the standard design patterns [Gang of Four] .

Notes and Comments

Notes are comments in the diagrams . Notes can stand an their own, or they can
be linked with a dashed line to the elements they are commenting (Figure 3 .6) .
They can appear in any kind of diagram .

The dashed line can sometimes be awkward because you can't position exactly
where this line ends. So a common convention is to put a very small open circle at
the end of the line. Sometimes, it's useful to have an in-line comment an a dia-
gram element. You can do this by prefixing the text with two dashes : -- .

Includes pick-ups
and SUVs but not
motorbikes

Car

Figure 3 .6 A note is used as a comment an one or more diagram elements



Dependency

A dependency exists between two elements if changes to the definition of one
element (the supplier) may cause changes to the other (the client) . With classes,
dependencies exist for various reasons : One class sends a message to another ;
one class has another as part of its data; one class mentions another as a param-
eter to an operation . If a dass changes its interface, any message sent to that
dass may no longer be valid .

As computer systems grow, you haue to worry more and more about con-
trolling dependencies . If dependencies get out of control, each change to a Sys-
tem has a wide ripple effect as more and more things have to change . The
bigger the ripple, the harder it is to change anything .

The UML allows you to depict dependencies between all sorts of elements .
You use dependencies whenever you want to show how changes in one element
might alter other elements .

Figure 3 .7 shows some dependencies that you might find in a multilayered
application. The Benefits Window class-a user interface, or presentation class-
is dependent an the Employee dass : a domain object that captures the essential
behavior of the system-in this case, business rules . This means that if the
employee dass changes its interface, the Benefits Window may have to change .

The important thing here is that the dependency is in only one direction and
goes from the presentation dass to the domain dass . This way, we know that
we can freely alter the Benefits Window without those changes having any
effect an the Employee or other domain objects . I've found that a strict Separa-
tion of presentation and domain logic, with the presentation depending an the
domain but not vice versa, has been a valuable rule for me to follow .

Benefits
Window

client

	 >

dependency

Figure 3 .7

Example dependencies

supplier

Employee

DEPENDENCY

Employee
Data Gateway

Benefits
Data Gateway

y



CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

A second notable thing from this diagram is that there is no direct dependency
from the Benefits Window to the two Data Gateway classes . If these classes
change, the Employee dass may have to change . But if the change is only to the
implementation of the Employee dass, not its interface, the change stops there .

The UML has many varieties of dependency, each with particular semantics
and keywords . The basic dependency that I've outlined here is the one 1 find the
most useful, and 1 usually use it without keywords . To add more detail, you can
add an appropriate keyword (Table 3 .1) .

The basic dependency is not a transitive relationship . An example of a transi-
tive relationship is the "larger beard" relationship . If Jim has a larger beard
than Grady, and Grady has a larger beard than Ivar, we can deduce that Jim has
a larger beard than Ivar. Some kind of dependencies, such as substitute, are
transitive, but in most cases there is a significant difference between direct and
indirect dependencies, as there is in Figure 3 .7 .

Many UML relationships imply a dependency. The navigable association
from Order to Customer in Figure 3 .1 means that Order is dependent an Cus-
tomer. A subclass is dependent an its superclass but not vice versa .

Table 3 .1 Selected Dependency Keywords

Keyword

	

Meaning

«cal l»

	

The source calls an operation in the target .
«create»

	

The source creates instances of the target .

«derive»

	

The source is derived from the target .
«instantiate»

«permit»

The source is an instance of the target . (Note that if the
source is a dass, the dass itself is an instance of the dass
dass; that is, the target dass is a metaclass) .
The target allows the source to access the target's private
features .

«real i ze»

	

The source is an implementation of a specification or
interface defined by the target (page 69) .

«refine»

	

Refinement indicates a relationship between different
semantic levels ; for example, the source might be a design
dass and the target the corresponding analysis dass .

«substitute»

	

The source is substitutable for the target (page 45) .
«trace»

	

Used to track such things as requirements to classes or
how changes in one model link to changes elsewhere .

«use»

	

The source requires the target for its implementation .



Chapter 5

Class Diagrams :
Advanced Concepts

The concepts described in Chapter 3 correspond to the key notations in dass
diagrams . Those concepts are the first ones to understand and become familiar
with, as they will comprise 90 percent of your effort in building dass diagrams .

The dass diagram technique, however, has bred dozens of notations for
additional concepts. 1 find that 1 don't use these all the time, but they are handy
when they are appropriate . I'll discuss them one at a time and point out some of
the issues in using them .

You'l1 probably find this chapter somewhat heavy going . The good news is
that during your first pass through the book, you can safely skip this chapter
and come back to it later .

Keywords
One of the challenges of a graphical language is that you have to remember
what the Symbols mean. With too many, users find it very difficult to remem-
ber what all the symbols mean . So the UML often tries to reduce the number of
symbols and use keywords instead. If you find that you need a modeling con-
struct that isn't in the UML but is similar to something that is, use the Symbol
of the existing UML construct but mark it with a keyword to show that you
have something different

An example of this is the interface . A UML interface (page 69) is a dass that
has only public operations, with no method bodies . This corresponds to inter-
faces in Java, COM (Component Object Module), and CORBA . Because it's a

65



66 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

special kind of dass, it is shown using the dass icon with the keyword «inter-

face» . Keywords are usually shown as text between guillemets . As an alternative
to keywords, you can use special icons, but then you tun into the issue of every-
one having to remember what they mean .

Some keywords, such as {abstract}, show up in curly brackets . It's never really
clear what should technically be in guillemets and what should be in curlies . For-
tunately, if you get it wrong, only serious UML weenies will notice-or care .

Some keywords are so common that they often get abbreviated : «interface»

often gets abbreviated to «I» and {abstract} to {A}. Such abbreviations are very
useful, particularly an whiteboards, but nonstandard, so if you use them, make
sure you find a spot to spell out what they mean .

In UML 1, the guillemets were used mainly for stereotypes . In UML 2, stereo-
types are defined very tightly, and describing what is and isn't a stereotype is
beyond the scope of this book . However, because of UML 1, many people use
the term stereotype to mean the Same as keyword, although that is no longer
correct .

Stereotypes are used as part of profiles . A profile takes a part of the UML
and extends it with a coherent group of stereotypes for a particular purpose,
such as business modeling . The full semantics of profiles are beyond this book .
Unless you are into serious meta-model design, you're unlikely to need to create
one yourself. You're more likely to use one created for a specific modeling pur-
pose, but fortunately, use of a profile doesn't require you to know the gory
details of how they are tied into the meta-model .

Responsibilities
Often, it's handy to show responsibilities (page 63) an a dass in a dass dia-
gram. The best way to show them is as comment strings in their own compart-
ment in the dass (Figure 5 .1) . You can name the compartment, if you wish, but
1 usually don't, as there's rarely any potential for confusion .

Static Operations and Attributes
The UML refers to an operation or an attribute that applies to a dass rather
than to an instance as static . This is equivalent to static members in C-based
languages . Static features are underlined an a dass diagram (see Figure 5.2) .



Responsibilities
-- displays information
about the model

Figure 5 .1 Showing responsibilities in a class diagram

getNumber

instance

	

getNextNewNumber
scope

Figure 5 .2 Static notation

View

Input Controller

-- handles input events

Order

AGGREGATION AND COMPOSITION

Model

-- domain logic

static

Aggregation and Composition
One of the most frequent sources of confusion in the UML is aggregation and
composition . It's easy to explain glibly : Aggregation is the part-of relationship .
It's like saying that a car has an engine and wheels as its parts . This sounds
good, but the difficult thing is considering what the difference is between aggre-
gation and association .

In the pre-UML days, people were usually rather vague an what was aggrega-
tion and what was association . Whether vague or not, they were always inconsis-
tent with everyone else . As a result, many modelers think that aggregation is
important, although for different reasons . So the UML included aggregation (Fig-
ure 5.3) but with hardly any semantics . As Jim Rumbaugh says, "Think of it as a
modeling placebo" [Rumbaugh, UML Reference] .

Iv



68 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

Figure 5.4 Composition

As well as aggregation, the UML has the more defined property of composi-
tion. In Figure 5.4, an instance of Point may be part of a polygon or may be the
center of - a circle, but lt cannot be both . The general rule is that, although a
dass may be a component of many other classes, any instance must be a com-
ponent of only one owner. The dass diagram may Show multiple classes of
potential owners, but any instance has only a single object as its owner .

You'11 note that 1 don't show the reverse multiplicities in Figure 5.4 . In most
cases, as here, it's 0 . .1 . Its only other possible value is 1, for cases in which the
component dass is designed so that it can have only one other dass as its
owner.

The "no sharing" rule is the key to composition. Another assumption is that
if you delete the polygon, it should automatically ensure that any owned Points
also are deleted .

Composition is a good way of showing properties that own by value, proper-
ties to ;alue objects (page 73), or properties that have a strong and somewhat
exclusive ownership of particular other components . Aggregation is strictly
meaningless ; as a result, I recommend that you ignore lt in your own diagrams .
If you see lt in other people's diagrams, you'11 need to dig deeper to find out what
they mean by it. Different authors and teams use lt for very different purposes .

Club

Figure 5.3 Aggregation

members
Person

{ordered}
Polygon

3 . .`
Point Circle

Derived Properties
Derived properties can be calculated based an other values . When we think
about a date range (Figure 5 .5), we can think of three properties : the starr date,



derived
attribute

Date Range

start: Date
end : Date
/length : Integer

Figure 5 .5 Derived attribute in a time period

the end date, and the number of days in the period . These values are linked, so
we can think of the length as being derived from the other two values .

Derivation in software perspectives can be interpreted in a couple of differ-
ent ways . You can use derivation to indicate the difference between a calculated
value and a stored value . In this case, we would interpret Figure 5 .5 as indicat-
ing that the starr and end are stored but that the length is computed . Although
this is a common use, I'm not so keen, because it reveals too much of the inter-
nals of DateRange .

My preferred thinking is that it indicates a constraint between values . In this
case, we are saying that the constraint among the three values holds, but it isn't
important which of the three values is computed . In this case, the choice of
which attribute to mark as derived is arbitrary and strictly unnecessary, but it's
useful to help remind people of the constraint . This usage also makes sense with
conceptual diagrams .

Derivation can also be applied to properties using association notation . In
this case, you simply mark the narre with a / .

Interfaces and Abstract Classes

An abstract class is a class that cannot be directly instantiated . Instead, you
instantiate an instance of a subclass. Typically, an abstract class has one or
more operations that are abstract. An abstract operation has no implementa-
tion; it is pure declaration so that clients can bind to the abstract dass .

The most common way to indicate an abstract dass or operation in the UML
is to italicize the narre. You can also make properties abstract, indicating an
abstract property or accessor methods. Italics are tricky to do an a white-
boards, so you can use the label : {abstract} .

An interface is a dass that has no implementation ; that is, all its features are
abstract . Interfaces correspond directly to interfaces in C# and Java and are a

INTERFACES AND ABSTRACT CLASSES

{length = start - end}

69



CHAPTER 5 CLASS DIAGRAMS : ADVANCED CONCEPTS

common idiom in other typed languages . You mark an interface with the key-
word «interface» .

Classes have two kinds of relationships with interfaces : providing and requir-
ing. A dass provides an interface if it is substitutable for the interface . In Java
and NET, a dass can do that by implementing the interface or implementing a
subtype of the interface . In C++, you subclass the dass that is the interface .

A dass requires an interface if it needs an instance of that interface in order
to work. Essentially, this is having a dependency an the interface .

Figure 5.6 shows these relationships in action, based an a few collection
Classes from Java . 1 might write an Order dass that has a list of line items .
Because I'm using a list, the Order dass is dependent an the List interface . Let's
assume that it uses the methods equals, add, and get . When the objects connect,

«interface»
Collection

Order

Line Items [*]

dependency
(rectuires
interface)

Interface
equals
add

«interface»
List

get

implementation
(provides
interface)

Figure 5.6 A Java example of interfaces and an abstract dass

abstract
dass

Abstract List

equals
get m,

ArrayList

get
add

abstract
m hod

overriding



Order

Line items [*]
c

Figure 5 .7 Ball-and-socket notation

INTERFACES AND ABSTRACT CLASSES

the Order will actually use an instance of ArrayList but need not know that in
order to use those three methods, as they are all part of the List interface .

The ArrayList itself is a subclass of the AbstractList class . AbstractList provides
some, but not all, the implementation of the List behavior. In particular, the get

method is abstract. As a result, ArrayList implements get but also overrides some
of the other operations an AbstractLi st . In this case, lt overrides add but is happy
to inherit the implementation of equal s .

Why don't 1 simply avoid this and have Order use ArrayList directly? By using
the interface, 1 allow myself the advantage of making it easier to change imple-
mentations later an if 1 need to . Another implementation may provide perfor-
mance improvements, some database interaction features, or other benefits . By
programming to the interface rather than to the implementation, 1 avoid having
to change all the Code should 1 need a different implementation of List. You

should always try to program to an interface like this ; always use the most gen-
eral type you can .

1 should also point out a pragmatic wrinkle in this . When programmers use a
collection like this, they usually initialize the collection with a declaration, like
this :

private List l i neItems = new ArrayLi stQ ;

Note that this strictly introduces a dependency from Order to the concrete
ArrayList . In theory, this is a problem, but people don't worry about lt in prac-
tice. Because the type of l i neItems is declared as List, no other part of the Order

class is dependent an ArrayList . Should we change the implementation, there's
only this one line of initialization code that we need to worry about. It's quite
common to refer to a concrete dass once during creation but to use only the
interface afterward .

The full notation of Figure 5 .6 is one way to notate interfaces . Figure 5 .7
shows a more compact notation . The fact that ArrayList implements List and
Collection is shown by having ball icons, often referred to as lollipops, out of it .
The fact that Order requires a List interface is shown by the socket icon . The
connection is nicely obvious .

ArrayList

Iv



CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

Order

Line Items [*]

Figure 5 .8 Older dependencies with lollipops

The UML has used the lollipop notation for a while, but the socket notation
is new to UML 2. (1 think it's my favorite notational addition .) You'11 probably
see older diagrams use the style of Figure 5 .8, where a dependency stands in for
the socket notation .

Any dass is a mix of an interface and an implementation . Therefore, we may
often see an object used through the interface of one of its superclasses . Strictly,
it wouldn't be legal to use the lollipop notation for a superclass, as the super-
class is a dass, not a pure interface . But 1 bend these rules for clarity.

As well as an dass diagrams, people have found lollipops useful elsewhere .
One of the perennial problems with interaction diagrams is that they don't pro-
vide a very good visualization for polymorphic behavior. Although it's not nor-
mative usage, you can indicate this along the lines of Figure 5 .9. Here, we can
see that, although we have an instance of Salesman, which is used as such by
the Bonus Calculator, the Pay Period object uses the Salesman only through its
Employee interface . (You can do the same trick with communication diagrams .)

ArrayList

Read-Only and Frozen

On page 37,1 described the { readOnl y} keyword. You use this keyword to mark a
property that can only be read by clients and that cannot be updated . Similar
yet different is the {frozen} keyword from UML 1 . A property is frozen if it can-
not change during the lifetime of an object ; such properties are often called
immutable. Although it was dropped from UML 2, {frozen} is a very useful con-
cept, so 1 would continue to use it . As well as marking individual properties as
frozen, you can apply the keyword to a dass to indicate that all properties of all
instances are frozen . (1 have heard that frozen may well be reinstated shortly .)



a scenario

evaluate

a Bonus
Calculator

set bonus amount

REFERENCE OBJECTS AND VALUE OBJECTS

Bruce : Salesman

addToPayList (Bruce)

calculatePayroll

non-
normative

calculate Pay-mal
employee

message
through
Interface

Figure 5 .9 Using a lollipop to show polymorphism in a sequence diagram

march:Pay
Period

Reference Objects and Value Objects
One of the common things said about objects is that they haue identity. This is
true, but it is not quite as simple as that . In practice, you find that identity is
important for reference objects but not so important for value objects .

Reference objects are such things as Customer. Here, identity is very impor-
tant because you usually wanz only one software object to designate a Customer
in the real world . Any object that references a Customer object will do so
through a reference, or pointer ; all objects that reference this Customer will ref-
erence the saure software object . That way, changes to a Customer are available
to all users of the Customer.

If you haue two references to a Customer and wich to see whether they are
the saure, you usually compare their identities . Copies may be disallowed ; if

y



Vf CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

they are allowed, they tend to be made rarely, perhaps for archive purposes or
for replication across a network. If copies are made, you need to sort out how
to synchronize changes .

Value objects are such things as Date . You often haue multiple value objects
representing the saure object in the real world . For example, it is normal to haue
hundreds of objects that designate 1-Jan-04 . These are all interchangeable cop-
ies. New Bates are created and destroyed frequently .

If you haue two Bates and wich to see whether they are the saure, you don't
look at their identities but rather at the values they represent . This usually
means that you haue to write an equality test Operator, which for Bates would
make a test an year, month, and day-or whatever the internal representation
is. Each object that references 1-Jan-04 usually has its own dedicated object,
but you can also shure Bates .

Value objects should be irrmutable ; in other words, you should not be able to
take a date object of 1-Jan-04 and change the saure date object to be 2-Jan-04 .
Instead, you should create a new 2-Jan-04 object and use that instead . The rea-
son is that if the'date were shared, you would update another object's date in an
unpredictable way, a problem referred to as aliasing .

In days gone by, the difference between reference objects and value objects
was dearer. Value objects were the built-in values of the type system . Now you
can extend the type system wich your own classes, so this issue requires more
thought.

The UML uses the concept of data type, which is shown as a keyword an the
dass Symbol. Strictly, data type isn't the saure as value object, as data typen
can't haue identity. Value objects may haue an identity, but don't use it for
equality. Primitives in Java would be data typen, but Bates would not, although
they would be value objects .

If it's important to highlight them, I use composition when associating wich a
value object. You can also use a keyword an a value type ; common conven-
tional ones 1 see are «val ue» or «struct» .

Qualified Associations

A qualified association is the UML equivalent of a programming concept vari-
ously known as associative arrays, maps, hashes, and dictionaries . Figure 5.10
shown a way that uses a qualifier to represent the association between the Order
and Order Line classes . The qualifier says that in connection wich an Order,
there may be one Order Line for each instance of Product .



Order Product

Figure 5 .10 Qualified association

From a Software perspective, this qualified association would imply an Inter-
face along the lines of

dass Order . . .

public OrderLine getLineItem(Product aProduct) ;

public void addLineItem(Number amount, Product forproduct) ;

Thus, all access to a given Order Line requires a Product as an argument,
suggesting an implementation using a key and value data structure .

It's common for people to get confused about the multiplicities of a qualified
association . In Figure 5 .10, an Order may haue mang Line Items, but the multi-
plicity of the qualified association is the multiplicity in the context of the quali-
fier. So the diagram says that an Order has 0 ..1 Line Items per Product . A
multiplicity of 1 would indicate that Order would haue to haue a Line Item for
every instance of Product. A would indicate that you would haue multiple
Line Items per Product but that access to the Line Items is indexed by Product .

In conceptual modeling, l use the qualifier construct only to Show constraints
along the lines of "Single Order Line per Product an Order ."

Classification and Generalization

I often hear people talk about subtyping as the is a relationship . I urge you to
beware of that way of thinking . The problem is that the phrase is a can mean
different things .

Consider the following phrases .

1 . Shep is a Border Collie .

2 . A Border Collie is a Dog .

3 . Dogs are Animals .

4 . A Border Collie is a Breed .

5 . Dog is a Species .

CLASSIFICATION AND GENERALRATION

live fitem

Order Line

amount :Number

y



CHAPTER 5 CLASS DIAGRAMS : ADVANCED CONCEPTS

Now try combining the phrases . If I combine phrases 1 and 2, I get "Shep is
a Dog"; 2 and 3 taken together yield "Border Collies are Animals ." And 1 plus
2 plus 3 gives me "Shep is an Animal." So far, so good. Now try 1 and 4 : "Shep
is a Breed ." The combination of 2 and 5 is "A Border Collie is a Species ." These
are not so good .

Why can I combine some of these phrases and not others? The reason is that
some are classification-the object Shep is an instance of the type Border Col-
lie-and some are generalization-the type Border Collie is a Subtype of the
type Dog. Generalization is transitive; classification is not . I can combine a clas-
sification followed by a generalization but not vice versa .

I make this point to get you to be wary of is a . Using it can lead to inappro-
priate use of subclassing and confused responsibilities . Better tests for subtyping
in this case would be the phrases "Dogs are kinds of Animals" and "Every
instance of a Border Collie is an instance of a Dog ."

The UML uses the generalization Symbol to show generalization . If you need
to show classification, use a dependency wich the «i nstanti ate» keyword .

Multiple and Dynamic Classification

Classification refers to the relationship between an object and its type . Main-
stream programming languages assume that an object belongs to a single dass .
But there are more options to classification than that .

In single classification, an object belongs to a single type, which may inherit
from supertypes . In multiple classification, an object may be described by sev-
eral types that are not necessarily connected by inheritance .

Multiple classification is different from multiple inheritance . Multiple inher-
itance says that a type may haue mang supertypes but that a single type muss be
defined for each object . Multiple classification allows multiple types for an
object without defining a specific type for the purpose .

For example, consider a person subtyped as either man or woman, doctor or
nurse, patient or not (See Figure 5.11) . Multiple classification allows an object
to haue any of these types assigned to it in any allowable combination, without
the need for types to be defined for all the legal combinations .

If you use multiple classification, you need to be sure that you make it dear
which combinations are legal . UML 2 does this by placing each generalization
relationship into a generalization Set . On the dass diagram, you Label the gener-
alization arrowhead wich the narre of the generalization Set, which in UML 1



Female

Male
sex

discriminator

Person

patient

Patient

Figure 5 .11 Multiple classification

was called the discriminator. Single classification corresponds to a single gener-
alization set wich no narre .

Generalization sets are by default disjoint : Any instance of the supertype
may be an instance of only one of the subtypes within that set . If you roll up

generalizations into a single arrow, they muss all be part of the saure generaliza-
tion set, as shown in Figure 5 .11 . Alternatively, you can haue several arrows
wich the saure text label .

To illustrate, note the following legal combinations of subtypes in the dia-
gram: (Female, Patient, Nurse) ; (Male, Physiotherapist) ; (Female, Patient) ; and
(Female, Doctor, Surgeon) . The combination (Patient, Doctor, Nurse) is illegal
because it contains two types from the role generalization set .

Another question is whether an object may change its dass . For example,
when a bank account is overdrawn, it substantially changes its behavior . Specif-
ically, several operations, including "withdraw" and "dose," get overridden .

Dynamic classification allows objects to change dass within the subtyping
structure ; static classification does not . With static classification, a separation is
made between types and states ; dynamic classification combines these notions .

Should you use multiple, dynamic classification? 1 believe that it is useful for
conceptual modeling. For Software perspectives, however, the distance between
it and the implementations is too muck of a leap . In the vast majority of UML

rote

MULTIPLE AND DYNAMIC GLASSIFICATION

Doctor

Nurse

Physio-
therapist

a

Surgeon

Family
Doctor



7s CHAPTER 5 CLASS DIAGRAMS : ADVANCED CONCEPTS

diagrams, you'll see only Single static classification, so that should be your
default .

Association Class
Association classes allow you to add attributes, operations, and other features
to associations, as shown in Figure 5 .12 . We can see from the diagram that a
person may attend mang meetings . We need to keep information about how
awake that person was ; we can do this by adding the attribute attentiveness to
the association .

Figure 5 .13 Shows another way to represent this information : Make Atten-
dance a full dass in its own right . Note how the multiplicities haue moved .

What benefit do you gain wich the association dass to Offset the extra nota-
tion you haue to remember? The association dass adds an extra constraint, in
that there can be only one instance of the association dass between any two
participating objects . 1 feel the need for another example .

Person Meeting

Figure 5.12 Association dass

Attendance

attentiveness

association dass

MeetingPerson

Attendance

attentiveness

Figure 5 .13 Promoting an association dass to a full dass



Take a look at the two diagrams in Figure 5 .14. These diagrams haue muck
the saure form. However, we can imagine one Company playing different roles
in the saure Contract, but it's harder to imagine a Person having multiple com-
petencies in the saure skill ; indeed, you would probably consider that an error .

In the UML, only the latter case is legal . You can haue only one competency
for each combination of Person and Skill . The top diagram in Figure 5.14 would
not allow a Company to haue more than one Role an a ringle Contract . If you
need to allow this, you need to make Role a full dass, in the style of Figure 5 .13 .

Implementing association classes isn't terribly obvious . My advice is to imple-
ment an association dass as if it where a full dass but to provide methods that
get Information to the classes linked by the association dass . So for Figure 5 .12,
I would see the following methods an Person :

dass Person
List getAttendancesO
List getMeetings()

Company

Person

Role

description

Competency

level

AssocIATION CLASS

Contract

Skill

Figure 5 .14 Association dass subtleties (Role should probably not be an association dass)

y



80 CHAPTER 5 CLASS DIAGRAMS : ADVANCED CONCEPTS

This way, a dient of Person can get hold of the people at the meeting; if they
wanz details, they can get the Attendances themselves . If you do this, remember
to enforce the constraint that there can be only one Attendance object for any
pair of Person and Meeting . You should place a check in whichever method cre-
ates the Attendance .

You often find this kind of construct wich historical information, such as in
Figure 5 .15 . However, I find that creating extra classes or association classes
can make the model tricky to understand, as well as tut the implementation in a
particular direction that's often unsuitable .

If 1 haue this kind of temporal information, I use a «temporal» keyword an the
association (see Figure 5 .16) . The model indicates that a Person may work for
only a ringle Company at one time . Over time, however, a Person may work
for several Companies . This suggests an Interface along the lines of :

dass Person . . .

Company getEmployerQ ;//get current employer

Company getEmployer(Date) ;//get employer at a given date

void changeEmployer(Company newEmployer,Date changeDate) ;

void leaveEmployer (Date changeDate) ;

The «temporal» keyword is not pari of the UML, but 1 mention it here for two
reasons . First, it is a notion I haue found useful an several occasions in my
modeling career. Second, it Shows how you can use keywords to extend the
UML. You can read a lot more about this at http://martinfowler.com/ap2/
timeNarrative.html .

Person

Person

Employment

period : dateRange

Figure 5 .15 Using a dass for a temporal relationship

Figure5 .16 «Temporal» keyword forassociations

employer
«temporal»

1
Company

Company



Template (Parameterized) Class

Several languages, most noticeably C++, haue the notion of a parameterized
dass, or template . (Templates are an the list to be induded in Java and C# in
the near future . )

This concept is most obviously useful for working wich collections in a
strongly typed language. This way, you can define behavior for sets in general
by defining a template dass Set .

dass Set <T> {

void insert (T newElement) ;

void remove (T anElement) ;

When you haue dope this, you can use the general definition to make Set

Basses for more specific elements :

Set <Employee> employeeSet ;

You declare a template dass in the UML by using the notation shown in Fig-
ure 5.17. The T in the diagram is a placeholder for the type parameter . (You
may haue more than one . )

A use of a parameterized dass, such as Set<Employee>, is called a derivation .
You can show a derivation in two ways. The first way mirrors the C++ syntax
(see Figure 5 .18). You describe the derivation expression within angle brackets
in the form <parameter-narre : :parameter-value> . If there's only one parameter, con-
ventional use often omits the parameter narre . The alternative notation (see
Figure 5.19) reinforces the link to the template and allows you to rename the
bound element .

i

	

T

	

1
Set

	

template parameter

template dass

Figure 5 .17 Template dass

insert(T)
remove(T)

TEMPLATE (PARAMETERIZED) CLASS 81



82 CHAPTER 5 Cu ss DIAGRAMS : ADVANCED CONCEPTS

Figure 5 .18 Bound element (version 1)

Figure 5 .19 Bound element (version 2)

Enumerations

Enumerations (Figure 5.20) are used to show a fixed set of values that don't
haue any properties other than their symbolic value . They are shown as the
dass wich the «enumeration» keyword .

Set <T : :Employee>

binding for parameter

The «bind» keyword is a stereotype an the refinement relationship . This rela-
tionship indicates that EmployeeSet will conform to the Interface of Set . You can
think of the EmployeeSet as a subtype of Set . This fits the other way of implement-
ing type-specific collections, which is to declare all appropriate subtypes .

Using a derivation is not the saure as subtyping, however. You are not
allowed to add features to the bound element, which is completely specified by
its template; you are adding only restricting type Information . If you wanz to
add features, you muss create a subtype .



Figure 5 .20 Enumeration

Active Class

An active dass has instances, each of which executes and controls its own
thread of control. Method invocations may execute in a dient's thread or in the
active object's thread . A good example of this is a command processor that
accepts command objects from the outside and then executes the commands
within its own thread of control .

The notation for active classes has changed from UML 1 to UML 2, as
shown in Figure 5 .21 . In UML 2, an active dass has extra vertical lines an the
siele; in UML 1, it had a thick border and was called an active object .

Command
Processor

«enumeration«
Color

red
white
blue

Command
Processor

active object (UML 1)

	

active dass (UML 2)

Figure 5.21 Active dass

VIsIBILITY

Visibility

Visibility is a subject that is simple in principle but has complex subtleties . The
simple idea is that any dass has public and private elements . Public elements
can be used by any other dass; private elements can be used only by the owning
dass. However, each language makes its own rules. Although mang languages
use such terms as Public, private, and protected, they mean different things in


