
Exceptions Practice Page 1

Exceptions Practice

Use jshell (part of the JDK) or BlueJ codepad to run these examples and discover the exception.  If you use 
BlueJ you need to perform imports.

Some useful jshell commands:

/help - print help.  "/help command" for help on a command

/imports  - list all imported classes and packages

/vars - list the variables you have defined and their values

/list - list the code you have typed

/exit - quit
jshell> /imports
|    import java.io.*
|    import java.math.*
|    import java.net.*
|    import java.nio.file.*
|    import java.util.*
etc.

1. What exception is thrown by these statements?

double[] score;

score.length

Double[] scores = {1.0, 2.0, 3.0};  // autobox double primitives as double objects

scores[3]

List<Double> list = Arrays.asList(scores);

list.get(list.size())

2. Complete this table.  Identify each exception as "checked" or "unchecked" (the "Checked?" column).  To 
find out what exception a method throws look in the Java API!

Checked Exception - an exception that you are required to handle using "try - catch" or declare "throws".

Unchecked Exception  - an exception that you are not required to handle.

Exception Checked? Example - if blank, give your own example

NullPointerException unchecked

ClassCastException

ArrayIndexOutOfBounds
Exception



Exceptions Practice Page 2
List<String> list = new ArrayList<>( );
list.add("foo"); 
String foo = list.get(2);

int n = 0;
int m = 1/n;

// use scanner to parse a String ("four")
Scanner scanner = new Scanner("four");
int n = scanner.nextInt( );

Scanner scanner = new Scanner("four");
scanner.next() 
scanner.next()

// FileReader reads a file as characters
// Similar to InputStream (reads bytes)
FileReader in = new FileReader(
                   "doesnotexist.foo");

// create String for money value
double value = 10.0;
String s = String.format("%d Baht", value);

// What exception should be thrown?
Purse purse = new Purse(-1);
// or here:
purse.insert( new Coin(-1,"Baht") );

3. Find all possible exceptions in this equals method. At each line that may throw exception, identify the 
type of exception and the cause (what values would cause the exception to be thrown).

public class Person {
    private String name;
    private LocalDate birthday;

    /** initialize a new Person object. */
    public Person(String name, LocalDate bday) {
        this.name = name;
        this.birthday = bday;
    }

    public boolean equals(Object obj) {

        Person other = (Person)obj;

        return this.birthday.equals(other.birthday)
               && this.name.equals(other.name);
    }



Exceptions Practice Page 3
4. We want to ask the user to guess a number, but we don't want the program to crash if user inputs an 
invalid answer.    If he inputs an invalid guess, just print "please input an integer" and discard the input.
Modify the code so that:

a) add try - catch only around the part of code that may throw exception.

b) fix the declaration of "int guess" to avoid scope problem when using try - catch.

c) discard the input line if the guess is invalid.  (Actually, it is OK to always discard the rest of the input line,
in case the use accidentally typed something extra.) 

If you don't discard the input line, scanner will get "stuck" at the input it has not read yet, so the same error 
will occur again.  

[You might want to actually do this in your GameConsole so you can check your answer.]

public int play(GuessingGame game) {
    Scanner console = new Scanner(System.in);
    while(true) {
        // print a message or hint from game
        System.out.println( game.getMessage() );
      
        System.out.print("Your guess? ");
        
        //TODO add try - catch to catch invalid input (not an int)

        int guess = console.nextInt( );

        if (game.guess(guess)) {
             System.out.printf("Right! The secret is %d\n", guess);
             return guess;
        }
     }
}

5. Some novice programmers put try - catch around big blocks of code instead of only the part they want to 
check, and catch every exception instead of specific exceptions, as shown below.  

Explain why this can result in inaccurate error messages or "hidden" errors.

        System.out.print("Your guess? ");
        
        try {
            int guess = console.nextInt( );
            if (game.guess(guess)) {
                 System.out.printf("Right! The secret is %d\n", guess);
                 return guess;
            }
        } catch (Exception ex) {
            System.out.println("Sorry, fumble fingers");
        }


	Exceptions Practice

