
542 Chapter 11 Input/output and exception handling

}

22.  What is the purpose of the call super(message) in the second Insufficient Funds
Exception constructor?

23.  Suppose you read bank account data from a file. Contrary to your expectation,
the next input value is not of type double. You decide to implement a BadData
Exception. Which exception class should you extend?

practice it  Now you can try these exercises at the end of the chapter: R11.7, R11.8, R11.9.

throw early, Catch late

When a method detects a problem that it cannot solve, it is better
to throw an exception rather than try to come up with an imperfect
fix. For example, suppose a method expects to read a number from a
file, and the file doesn’t contain a number. Simply using a zero value
would be a poor choice because it hides the actual problem and per-
haps causes a different problem elsewhere.

Conversely, a method should only catch an exception if it can
really remedy the situa tion. Otherwise, the best remedy is simply to have the exception propa-
gate to its caller, allowing it to be caught by a competent handler.

These principles can be summarized with the slogan “throw early, catch late”.

do not squelch exceptions

When you call a method that throws a checked exception and you haven’t specified a handler,
the compiler com plains. In your eagerness to continue your work, it is an understandable
impulse to shut the compiler up by squelch ing the exception:

try
{
 Scanner in = new Scanner(new File(filename));
 // Compiler complained about FileNotFoundException
 . . .
}
catch (FileNotFoundException e) {} // So there!

The do-nothing exception handler fools the compiler into thinking that the exception has
been handled. In the long run, this is clearly a bad idea. Exceptions were designed to transmit
problem reports to a competent handler. Install ing an incompetent handler simply hides an
error condition that could be serious.

do not use catch and finally in the same try statement 

It is possible to have a finally clause following one or more catch clauses. Then the code in the
finally clause is exe cuted whenever the try block is exited in any of three ways:

1.  After completing the last statement of the try block
2.  After completing the last statement of a catch clause, if this try block caught an

exception
3.  When an exception was thrown in the try block and not caught

programming tip 11.1

© Eric Isselé/iStockphoto.

throw an exception
as soon as a
problem is detected.
Catch it only
when the problem
can be handled.

programming tip 11.2

© Eric Isselé/iStockphoto.

programming tip 11.3

© Eric Isselé/iStockphoto.

It is tempting to combine catch and finally clauses, but the resulting code can be hard to
understand, and it is often incorrect. Instead, use two statements:
• a try/finally statement to close resources
• a separate try/catch statement to handle errors
For example,

try
{
 PrintWriter out = new PrintWriter(filename);
 try
 {
 Write output.
 }
 finally
 {
 out.close();
 }
}
catch (IOException exception)
{
 Handle exception.
}

Note that the nested statements work correctly even if the PrintWriter constructor throws an
exception.

do throw specific exceptions

When throwing an exception, you should choose an exception class that describes the situ-
ation as closely as possible. For example, it would be a bad idea to simply throw a Runtime
Exception object when a bank account has insufficient funds. This would make it far too diffi-
cult to catch the exception. After all, if you caught all exceptions of type Runtime Exception, your
catch clause would also be activated by exceptions of the type NullPointer Exception, Array
In dexOutOfBoundsException, and so on. You would then need to carefully examine the exception
object and attempt to deduce whether the exception was caused by insufficient funds.

If the standard library does not have an exception class that describes your particular error
situation, simply pro vide a new exception class.

assertions

An assertion is a condition that you believe to be true at all times in a particular program loca-
tion. An assertion check tests whether an assertion is true. Here is a typical assertion check:

public double deposit (double amount)
{
 assert amount >= 0;
 balance = balance + amount;
}

In this method, the programmer expects that the quantity amount can never be negative.
When the assertion is correct, no harm is done, and the program works in the normal way. If,
for some reason, the assertion fails, and assertion checking is enabled, then the assert state-
ment throws an exception of type AssertionError, causing the program to terminate.

However, if assertion checking is disabled, then the assertion is never checked, and the pro-
gram runs at full speed. By default, assertion checking is disabled when you execute a program.

programming tip 11.4

© Eric Isselé/iStockphoto.

special topic 11.5

© Eric Isselé/iStockphoto.

bj5_ch11_07.indd 542 10/10/12 10:46 AM

