
 1

Exceptions

James Brucker

What are Exceptions?
Exceptions are unusual events detected by the

hardware or software.
 not necessarily an error.

Synchronous exceptions occur in response to some
action by the program.

Example: array index out-of-bounds, read error

Asynchronous exceptions can occur at any time,
independent of program execution.

 Example: hardware error, network error

What Causes Exceptions?
Language Violation

 illegal array subscript, using a null pointer.

 integer divide by zero

Environment

 read a file without "read" permission

User-defined (programmer-defined) conditions

 app can "throw" exceptions to signal a problem

 ex: Iterator next() may throw NoSuchElementException

Hardware Errors - out of memory error, network error.
 usually fatal

Examples

double[] score;
score[4] = 0;

NullPointerException

ArrayIndexOutOfBoundsException

double[] score = new double[4];
score[4] = 0;

Examples

IndexOutOfBoundsException

Not "ArrayIndexOut..." as on previous slide

FileInputStream in =
 new FileInputStream("data.tXt");

FileNotFoundException

wrong filename

List<String> list =
 Arrays.asList(score);
list.get(list.size());

Error Example

Double[] d = new Double[1_000_000_000];

java.lang.OutOfMemoryError -

 not enough heap space for array

What exceptions are thrown here?

public boolean equals(Object obj) {
 Coin c = (Coin)obj; //1
 return c.value == this.value; //2
}

What exceptions may be thrown?

1? ________________________________

2? ________________________________

Not a number

double x = Double.parseDouble("one");

What exception? ______________________

The #1 programming error

NullPointerException
 array reference fib was never assigned to an array

public class Purse {
 private Coin[] coins;

/** constructor for a new Purse */
public Purse(int capacity) {

Coin[] coins = new Coin[capacity];
}
public int getBalance() {

int sum = 0;
for(int k=0; k < coins.length; k++)
 sum += coins[k].getValue();

 return sum;
 }

Which statement throws NullPointerException?

Can this throw NullPointerException?

public class Purse {
 private Coin[] coins;

 public Purse(int capacity) {
 coins = new Coin[capacity]; // fixed!
 }
 public int getBalance() {
 int sum = 0;
 for(int k=0; k < coins.length; k++)
 sum += coins[k].getValue();
 return sum;
 }

How to Handle Exceptions?

1. "catch" the exception and do something.

2. declare that the method "throws exception"

 - This means that the calling method will need to
handle the exception.

3. Ignore it.

 - Allowed for Error and RuntimeExceptions

Catching an Exception

This is called a "try - catch" block.

/** open a file and read some data */
String filename = "mydata.txt";

// this could throw FileNotFoundException

try {
 InputStream in = new FileInputStream(filename);

} catch(FileNotFoundException ex) {

 System.err.println("File not found "+filename);
 return;

}

You can Catch > 1 Exception

scanner = new Scanner(System.in);

try {

 int n = scanner.nextInt();

 double x = 1/n;

} catch(InputMismatchException ex1) {
System.err.println("Input is not an int");

} catch(DivisionByZeroException ex2){

System.err.println("Fire the programmer");

}

Multi-catch

InputStream in = null;

try {

 in = new FileInputStream("foo.txt");

} catch(FileNotFoundException |

scanner = new Scanner(System.in);

try {

 int n = scanner.nextInt();

 double x = 1/n;

} catch(InputMismatchException |

 NoSuchElementException |

 DivisionByZeroException ex)

{

System.err.println("Fire the programmer");

}

Scope Problem
try { ... } block defines a scope.

try {

 int n = scanner.nextInt();

 double x = 1/n;

} catch(InputMismatchException ex1) {

 System.err.println("Not an int");

} catch(DivisionByZeroException ex2) {

 System.err.println("Fire the
programmer");

}

System.out.println("x = " + x);

Error: x not defined here (out of scope).

Fixing the Scope Problem
 Define x before the try - catch block.

double x = 0;

try {

 int n = scanner.nextInt();

 x = 1/n;

} catch(InputMismatchException ime) {

 System.err.println("Not a number!");

 return;

} catch(DivisionByZeroException e) {

 System.err.println("Fire the programmer");

}

System.out.println("x = " + x);

"Propagate" an Exception
A method or constructor that does not handle exception itself must declare that it
"throws Exception".

- Required only for Checked Exceptions

/** Read data from an InputStream */

public void readData(InputStream in)

 throws IOException {

 // read the data from InputStream

 // don't have to "try - catch" IOException

}

Why not catch an exception?

Method does not know how to cope with the problem, so let the
caller handle it.

Example: a method to open and read data from a specified file.

Caller should know if the file does not exist.

How do you know what exceptions
may be thrown?

The Java API tells you.

class java.util.Scanner
public String next()

Finds and returns the next complete token from this scanner. A
...

...
Returns:

 the next token
Throws:
 NoSuchElementException - if no more tokens are available
 IllegalStateException - if this scanner is closed

 the current method returns immediately

 the exception is passed (propagated) to caller.

 caller can "catch" exception or the exception
propagates again.

 If no code catches the exception, the JVM handles it:

 prints name of exception and where it occurred

 prints a stack trace (e.printStackTrace())

 terminates the program

What if we don't catch the Exception?

Propagation of Exceptions
Exception are propagated "up the call chain".
int a() throws Exception {

int result = b();
}
int b() throws Exception
{

throw new Exception("Help!");
}

public static void main(String[] args) {
 try {
 answer = a();
 }
 catch(Exception e) {
 // handle exception
 }

Are we required to handle exceptions?

Scanner console = new Scanner(System.in);

// We don't have to catch NumberFormatException

// We don't have to catch NoSuchElementException

int n = console.nextInt();

Java does not require us to use try - catch here:

But we are required to try-catch or declare "throws ..." :

// Must handle FileNotFoundException

FileInputStream instream =

 new FileInputStream("mydata.txt");

Why?

Give 3 Examples

Name 3 exceptions that you are not required to handle
using "try - catch".

(think of code you have written that could throw
exception, but you didn't write try - catch)

1.

2.

3.

Exceptions in Java
Exceptions are subclasses of Throwable.

Throwable

 Error Exception

IOExceptionRuntimeException others Detected and
thrown by Java
VM, such as out-
of-heap space

• IndexOutOfBounds
• NullPointer
• IllegalArgument
• ClassCast (bad cast)
• more...

• FileNotFound
Exception

• EOFException
• ZipException

• ParseException

• user defined
• more...

Two Exception Categories

Checked Exceptions

Java requires the code to either handle (try-catch) or
declare ("throws") that it may cause this exception.

 "Checked" = you must check for the exception.

Examples:

IOException

MalformedURLException

ParseException

Unchecked Exceptions
Unchecked Exceptions

code is not required to handle this type of exception.

Unchecked Exceptions are:

 subclasses of RunTimeException

IllegalArgumentException

NullPointerException

ArrayIndexOutOfBoundsException

DivideByZeroException (integer divide by 0)

 all subclasses of Error

Why Unchecked Exceptions?

1. Too cumbersome to declare every possible occurrence

2. They can be avoided by correct programming, or

3. Something beyond the control of the application.

If you were required to declare all exceptions:

public double getBalance() throws
 NullPointerException, IndexOutOfBoundsException,
 OutOfMemoryError, ArithmeticException, ...
{

double sum = 0;
for(Valuable v : valuables) sum += v.getValue();

Exception Reading a File

public String readfile(String filename)
{
 InputStream in =
 new FileInputStream(filename);//1
 byte b = in.read(); //2

 1 may throw FileNotFoundException

 2 may throw IOException

You can avoid RuntimeExceptions
"If it is a RuntimeException, it's your fault!"

-- Core Java, Volume 1, p. 560.

You can avoid RuntimeExceptions by careful
programming.

 NullPointerException - avoid by testing for a null value
before referencing a variable. Always initialize variables!

 ArrayIndexOutOfBoundsException - avoid by correct
programming -- correct bounds on loops, etc.

 ClassCastException - indicates faulty program logic

 IllegalArgumentException - don't pass invalid
arguments. Validate input data before using it.

Avoiding RuntimeExceptions

1. Document what your method requires and what it
returns.

2. Know what other code (you use) requires and
returns, too.

3. Review and test your code.

When should you catch an exception?
 catch an exception only if you can do something

about it
 if the caller can handle the exception better, then

"throw" it instead... let the caller handle it.
 declare exceptions as specific as possible

/* BAD. Not specific. */
readFile(String filename) throws Exception {

...
}
/* Better. Specific exception. */
readFile(String filename)

throws FileNotFoundException {
...

}

Know the Exceptions

Scanner input = new Scanner(System.in);

int n = input.nextInt();

What exceptions might this code throw?

First Match

 Need to define "in" outside the block.

try {

value = scanner.nextDouble();

}

catch(InputMismatchException e) {

error("Wrong input, stupid");

}

catch(NoSuchElementException e2) {

error("Nothing to read.");

}

If an exception occurs, control branches to the first
matching "catch" clause.

InputStream Example, Again

/** open a file and read some data */

public void readFile(String filename) {

FileInputStream in = null;

// this could throw FileNotFoundException

try {
in = new FileInputStream(filename);

c = in.read();

}

 catch(FileNotFoundException e) {
System.err.println("File not found "+filename);

}

 catch(IOException e) {
System.err.println("Error reading file");

}

Exception Order Matters!

/** open a file and read some data */

public void readFile(String filename) {

FileInputStream in = null;

try {
in = new FileInputStream(filename);

c = in.read();

}

 catch(IOException e) {
System.err.println("Error reading file");

}

 catch(FileNotFoundException e) {
System.err.println("File not found "+filename);

}

This catch
block is
never
reached!

FileNotFound
Exception is a kind
if IOException.
First catch gets it.

try - catch - finally syntax

try {
block-of-code;

}
catch (ExceptionType1 e1)
{

exception-handler-code;
}
catch (ExceptionType2 e2)
{

exception-handler-code;
}

{
code to always execute after try-catch

}

try - catch - finally example

Stringbuffer buf = new StringBuffer();

InputStream in = null;

try {

in = new FileInputStream(filename);

while ((c = System.in.read()) != 0)

buf.append(c);

}

catch (IOException e){

 System.out.println(e.getMessage());

}

finally { // always close the file

 if (in != null) try { in.close(); }

 catch(IOException e) { /* ignored */ }

}

Exception Handling is Slow

1. Runtime environment must locate first handler.

2. Unwind call chain and stack

 locate return address of each stack frame and jump
to it.

 invoke "prolog" code for each function

 branch to the exception handler

Recommendation:
avoid exceptions for normal flow of execution.

Example: lazy equals method

What exceptions may be thrown by equals?

public class Person {
private String firstName;
private String lastName;

/** equals returns true if names are same */
public boolean equals(Object obj) {

Person other = (Person) obj;
return firstname.equals(other.firstName)

&& lastName.equals(other.lastName);
}

Example

What exceptions may be thrown?

1.

2.

/**
 * Sum all elements of an array
 */
public int sumArray(int [] arr) {

int sum = 0;
for(int k=0; k<=arr.length; k++)

sum += arr[k];
return sum;

}

How To Write Code that NEVER crashes?

/**
 * Run the Coin Purse Dialog.
 * Don't crash (except for hardware error).
 */
public static void main(String [] args) {
 while(true) try {

 Purse purse = new Purse(20); // capacity 20
 ConsoleDialog dialog =

new ConsoleDialog(purse);
 dialog.run();

 } catch(Exception e) {
 System.out.println("System will restart...");

 log.logError(e.toString());
 }
}

Exceptions Questions

 Do exception handlers use lexical or dynamic scope?

 What is the purpose of "finally" ?

 Efficiency: see homework problem.

Exception Handling in Python

1. Identify common exceptions

2. Use try - except

3. How to throw (raise) an exception in code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

