
  1

Throwing Exceptions

You can create and throw your own 
exceptions in code.



What to do when something is wrong?

The insert( Coin ) method of Purse requires that a coin 
have a positive value and a currency.

What if coin has 0 value or no currency?

1. Simply ignore it

2. Return a special value to indicate failure.

3. Print a message on console. 

4. Throw an exception

Let's compare the choices...



Insert an illegal coin?

1. Simply ignore it

  The worst solution -- the code has no idea that 
something is wrong.

2. Return a special value to indicate failure.

  OK, but then the caller must always check the return 
value.  Sometimes this is reasonable. Usually it makes 
the code more complex & harder to read.

boolean insertOk = purse.insert( coin );
if (! insertOk ) {
   System.out.printf("Sorry, can't insert %s",
   coin.toString()));
   // why not?  What's wrong?  



Print a Message?

3. Print a message on the console

  Bad idea

  a) calling method doesn't see the problem

  b) there may not be a console (web app, mobile app)

  c) doesn't help solve the problem

Design Principle:

"throw exceptions, don't print them"
 



Throw Exception

4. Throw an exception

  For unusual conditions and errors, the cleanest 
solution is often to throw an exception.

/** Add two money objects.
 *  @param other another money with same
 *     currency to add to this money object.
 */
public Money add(Money other) {
   if (! this.currency.equalsIgnoreCase(
              other.getCurrency()) {
   throw new IllegalAgumentException(
     "Cannot add money with different currency");
   }



Commonly Used Exception

IllegalArgumentException("message") - parameter to a 
method or constructor violates requirements

UnsupportedOperationException - the requested 
operation is not supported.  This is thrown by optional 
methods like Iterator remove(). 

RuntimeException("message") - a general catch-all for 
conditions that don't have a specific exception.



How to Create Exception?

Exception(String message)
       - provide a description message of cause
Exception(Throwable other)
       - wrap another exception
Exception(String message, Throwable cause)
       - wrap another exception and provide an
        explanatory message.
Exception() 
       - OK if exception class makes the cause clear

Exceptions are ordinary Java classes that extend Exception or 
RuntimeException.
You can create instances using the usual Java syntax.
Exceptions usually have 4 constructors:



Stop Bad Money - throw exception

In Coin Purse, we can stop bad money by having the 
top-level class (Money or AbstractValuable) constructor 
validate the parameters & throw exception.

/** 

 * Money with a value and currency.

 * @param value the value of money, must be pos.

 * @throws IllegalArgumentException if invalid

 */

public Money(double value, String currency) {

    if (value <= 0.0)

      throw new IllegalArgumentException(

        "Value of money must be positive");



"Wrap" an Exception

Catch an exception and rethrow it inside another 
exception object.  

/** Read all data from an InputStream */

public String readAll(InputStream in) {

    try {

        // read the entire input 

        // InputStream may throw IOException

    } catch (IOException ex) {

       throw new RuntimeException(

            "Exception reading input", ex);

    }

}



Why "Wrap" an Exception?

You can catch an exception and "wrap" it in another 
exception, then throw it.

Why do this?

1. Convert a Checked Exception to Unchecked

    - so caller is not required to use "try - catch"

2. Provide a more meaningful exception type



What Exception Type to Use? 

See if you can find a suitable exception in the Java API.

Generally prefer to use an unchecked exception, namely, 
RuntimeException and its subclasses.

If necessary, create your own subclass of RuntimeException.

Example:  a Stack class might define a StackFullException



Useful: IllegalArgumentException

public class Money implements Valuable {

  /**

   * Instantiate Money with a value and currency.

   * @param value of the money, may not be neg.

   * @throws IllegalArgumentException 

   *         if value is negative

   */

  public Money(double value, String currency) {

     if (value < 0.0)

       throw new IllegalArgumentException(

          "Value may not be negative"); 

     this.value = value;

     ...



Rethrowing the Same Exception

A function can catch an exception and throw it again.

Sometimes used for logging.

try {
    sub();   // sub() throws exception 
}
catch ( RuntimeException e ) {
    // log the problem
    Logger.getLogger().warning(
        "sub() threw exception: "+ e );
    // throw it again!
    throw e;
}


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

