
Frameworks

Reusable Software

Frameworks are ...

 a reusable application or environment that can be
modified by adding (your) application-specific code,
without modifying the framework code.

 frameworks provide a reusable architecture, not just
reusable code.

Examples

 Java Collections Framework
– use it to create custom collections that reuse the base

collections logic and interfaces
 Web Frameworks
– provide logic and architecture for request mapping,

session management, database access, and more.
– Spring Framework, Play (Java)
–Django (Python)
–Rails (Ruby)
– Symphony, CakePHP, Lavarel (PHP)

 JUnit Testing Framework

"Slots": Required Customization

Frameworks often require you to add some code before
they can be used.
These methods are called slots.

Slot can be a
class or a
method.

Object Client-Server Framework

OCSF is a TCP-based client-server framework.

Client Side:
 connect to server
 send messages to server
 receive message from server
 handle connect & disconnect events

Server Side:
 manage connections to clients
 receive messages from clients
 send messages to clients

OCSF

Network

"slots" are usually callbacks

A callback is a method in your code that the framework
invokes. You start the framework, then it calls you back
when an event occurs.
This is also called inversion of control:
You start the framework, then the framework takes
control.
In OCSF, the required callbacks (slots) are:
 Client: handleMessageFromServer
 Server: handleMessageFromClient
That's it! You can write a network client-server application
just by writing 2 methods.

Code Reuse, Architecture Reuse

OCSF provides the architecture and code for a TCP
client-server application.
You can use the framework without knowing how it works
(or how TCP works).

 but you should study OCSF to learn how to use
networking in Java.

You can modify and extend the framework by
overriding callbacks (slots and hooks).

OCSF AbstractClient

<<controls>> (commands to the framework)
 openConnection()
 sendToServer(Object)
 closeConnection()
<<hooks>> (optional callbacks)
 connectionEstablished()
 connectionClosed()
 connectionException()
<<slot>> (required callbacks)
 handleMessageFromServer(Object) {abstract}
<<accessors & mutators>>
 isConnected()
 getPort(), setPort(port)
 getHost(), setHost(server)

OCSF AbstractServer

<<controls>> (commands to the framework)
 listen()
 stopListening()
 sendToAllClients(Object msg)
<<hooks>> (optional callbacks)
 clientConnected()
 clientDisconnected()
 several others
<<slot>> (required callbacks)
 handleMessageFromClient(Object) {abstract}
<<accessors & mutators>>
 isListening()
 getClientConnection(int id)
 getPort(), setPort(port)

How to Use a Framework?

In OCSF you create a subclass and define the required
abstract methods.

You may override: hook methods

You may call (but don't override): controls, queries,
mutator methods

Some other frameworks use dependency injection
instead.

Example

A messaging client that sends strings (message).
All clients receive the message.
Use port 5555 (port > 1024 is suggested for Linux and
MacOS).

Client side

Extend AbstractClient & implement the callback method

import com.lloseng.ocsf.client.AbstractClient;
public class ChatClient extends AbstractClient {
 public ChatClient(String host, int port) {

super(host, port);
 }

@Override
protected void handleMessageFromServer(Object msg)

 {
System.out.println("> " + msg);

}
}

Run the client

1) Create a client with server (host) name and server port.
2) Connect to the server.
3) In a loop...

1) wait for user to type a message
2) send message to server

TODO: provide a way to quit

Server Side: an Echo Server

Create a server that just echoes messages to all client.
Extend AbstractServer. Override the "slot" method.

public class EchoServer extends AbstractServer {

/** create a new echo server */
public EchoServer(int port) {

super(port);
}

@Override
protected void handleMessageFromClient(

 Object msg, ConnectionToClient client) {

super.sendToAllClients(msg);
}

Running the Server

private static final int PORT = 5555;

public static void main(String[] args) {

 EchoServer server = new EchoServer(PORT);
 try {
 server.listen();
 System.out.printf("Listening on port %d\n",
 PORT);
 } catch (IOException e) {
 System.out.println("Couldn't start server:");
 System.out.println(e);
 }
}

Using Hooks

Server:
 print a message when a client connects or disconn.

Client:
 print a message if server closes the connection.

What hooks (callbacks) can we should use to do this?

How OCSF Works

You don't know how a framework works in order to use it.

This is the advantage of a framework; it provides an
abstraction for what you want to do.

Think "value added" … don't waste time re-inventing
logic and architecture that has been done already.

TCP is Connection Oriented

In TCP, a server listens for connections on a port number.
A client connects using server's IP address and port
number.
Either side can send messages.
A server can accept many connections on the same port.
When a client connects, the server creates a new thread
to handle communication with one client.

TCP Example

OCSF's Main Classes

The Client Side

AbstractClient must be subclassed
• Any subclass must provide an implementation for

handleMessageFromServer
– Takes appropriate action when a message is received from a

server

Implements the Runnable interface
• Has a run method which
– Contains a loop that executes for the lifetime of the thread

The public interface of AbstractClient

Control methods (you can call these, but don't
override)
• openConnection
• closeConnection
• sendToServer

Status and Accessor/Mutator
• isConnected
• getHost
• setHost
• getPort
• setPort
• getInetAddress

Callback methods of AbstractClient

Callbacks that may be overridden:
• connectionEstablished
• connectionClosed

Callback that must be implemented:
• handleMessageFromServer

References

Object Client-Server Framework
http://www.site.uottawa.ca/school/research/lloseng/supportMaterial/o
csf/ocsf.html (OCSF is in chapter 3 and chapter 6)
Youtube lecture by one of the authors of OCSF:
https://www.youtube.com/watch?v=hGM1eT8EVuI

XMPP - another messaging framework with many applications.
https://xmpp.org/
Smack - Java XMPP client library

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

