

33Basing software development on

reusable technology

In the last chapter, we refreshed your knowledge of the object-oriented

paradigm, an important software development technology that can be used to

construct complex software systems. It would be nice, however, if instead of

developing an entire system from scratch, you could simply adapt an existing

system to meet your needs. In other words, reuse is one of the keys to successful

software development. We will start our exploration of the software

development process by looking at a technology called frameworks that

promotes reuse.

In this chapter we will also introduce the client–server architecture, one of the

most widely used ways of structuring software systems. We will then introduce

a framework specifically designed for this book that allows software developers

to rapidly build many different client–server systems.

In this chapter you will learn about the following
■ Frameworks, reusable software subsystems that implement important

facilities which many applications can use.

■ The client–server architecture, an important way of designing programs in

which the software is divided into two main parts: a client program which

runs on each user’s computer, and a server program with which each user’s

client communicates in order to obtain services.

■ A client–server framework written in Java. We will use this as the basis for

many of the exercises presented in the book.

 Lethbridge.book Page 67 Tuesday, November 16, 2004 12:22 PM

68 Chapter 3
Basing software development on reusable technology

3.1 Reuse: building on the work and experience of others

Where feasible, software engineers should avoid re-developing software that

others have already developed; in other words, they should try to reuse others’

work.

In order to facilitate reuse, software engineers should also make their designs

reusable. This means designing and documenting software so that it is

understandable and flexible enough be used in a variety of different systems.

The following are some of the types of reuse practiced by software engineers,

in increasing order according to the potential amount of work that can be saved

by the reuse:

■ Reuse of expertise. Software engineers who have many years of experience

working on projects can often save considerable time when it comes to

developing new systems because they do not need to re-think many issues:

their past experience tells them what needs to be done. If such people write

articles describing their experiences, this can help others to do better

engineering work.

■ Reuse of standard designs and algorithms. There are thousands of algorithms

and other aspects of designs described in various books, standards documents

and articles. These represent a tremendous wealth for the software designer,

since all he or she needs to do is to implement them if they are appropriate to

the current task.

■ Reuse of libraries of classes or procedures, or of powerful commands built

into languages and operating systems. Libraries and commands represent

implemented algorithms, data structures and other facilities. Software

developers always do this kind of reuse to some extent since all programming

languages come with some basic libraries. The more powerful the facilities that

come with a programming language, the more powerful and ‘high level’ the

language is. Applications like spreadsheets, word processors and database

programs have built-in languages with commands for such things as sorting,

searching and displaying dialogs. Using these languages, which are often called

fourth-generation languages, is an important form of reuse.

■ Reuse of frameworks. Frameworks are libraries containing the structure of

entire applications or subsystems. To complete the application or subsystem,

you merely need to fill in certain missing details. A framework can be written

in any programming language and can vary considerably in sophistication and

detail. We will discuss them in more detail in Section 3.3.

■ Reuse of complete applications. You can take complete applications and add a

small amount of extra software that makes the applications behave in special

ways the client wants. For example, you might take a standard email application

and add a feature that would always update its ‘address book’ with data from

the company’s employee and client databases. This type of reuse is often called

 Lethbridge.book Page 68 Tuesday, November 16, 2004 12:22 PM

Section 3.2 69Incorporating reusability and reuse into software engineering

reuse of commercial off-the-shelf or

COTS software, and the extra code

written is often called glue code. It is

common to write the glue code using

scripting languages which run using

an interpreter.

The elements reused in the latter three types of reuse are often collectively called

components.

Unfortunately, reuse is not as extensive in software engineering projects as

might be desirable. Some of the reasons for this are outlined in the next section.

In this book, we want to encourage you always to think in terms of reuse when

you develop software. Therefore, as a major part of this chapter, we will present

a reusable framework that will form the basis for many examples and exercises.

Exercises

E37 Search the Internet in order to build a list of sources of information about the

following things which can be reused during software development. Rate each

source on a scale from low to high, where low means the source is very

uninformative (perhaps just offering to sell a product), and high means it

provides a wealth of practical information.

(a) Wisdom and experience about software design (e.g. tips, guidelines etc.).

(b) Written descriptions of standard algorithms.

(c) Class libraries.

(d) Code repositories.

(e) Fourth-generation languages.

(f) Macro packages you can add to spreadsheet or word processor programs.

(g) Frameworks.

(h) Scripting languages used to glue together COTS programs.

E38 Pick a couple of the best sources of information from the last exercise and

discuss how they can help you achieve the reuse objective.

3.2 Incorporating reusability and reuse into software engineering

In order for reuse to occur, software developers must not only reuse existing

good-quality components, but must also contribute to reusable components

that others can use.

Newton on reuse
Reuse is not a new concept. It was
Isaac Newton who said, ‘If I have seen
further it is by standing on the
shoulders of giants.’

 Lethbridge.book Page 69 Tuesday, November 16, 2004 12:22 PM

70 Chapter 3
Basing software development on reusable technology

Encouraging reuse: breaking the vicious cycle
Reuse and design for reusability, especially of frameworks, need to be made part

of the culture of software development organizations. In the many organizations

that do not practice reuse, software engineers tend to start design from scratch

for each new application either because there are no reusable components

available to reuse, or because they do not feel confident about reusing whatever

is available.

Developers are often willing to reuse packages of code delivered with a

programming language, but are reluctant to develop new ones, and are

especially reluctant to develop entirely new frameworks.

There are several reasons for this reluctance:

■ Developing anything reusable is seen as not directly benefiting the current

customer – after all, the current customer only needs one application, so why

take the extra time needed to develop something that will benefit other

applications? This argument often seems particularly convincing when

developers are under extreme deadlines.

■ If a developer has painstakingly developed a high-quality reusable component,

but management only rewards the efforts of people who create the more visible

‘final product’, then that developer will be reluctant to spend time on reusable

components in the future.

■ Efforts at creating reusable software are often done in a hurry and without

enough attention to quality. People thus lose confidence in the resulting

components, and in the concepts of reuse and reusability.

Therefore many organizations suffer from a vicious circle: developers do not

develop high-quality reusable components, therefore there is nothing good

enough to reuse. Since there is nothing good enough to reuse, software

developers take so much time to develop applications that they lack time to

invest in reusable frameworks or libraries.

This cycle can only be broken if software engineers and their managers

recognize the following points:

■ The vicious cycle exists, and costs money.

■ In order to save money in the longer term, some investment in reusable code is

normally justified.

■ Developers should be explicitly rewarded for developing reusable components.

■ Attention to quality of reusable components is essential so that potential

reusers have confidence in them.

■ Developing reusable components will normally simplify the resulting design,

independently of whether reuse actually occurs.

■ Developing and reusing reusable components improves reliability, and can

foster a sense of confidence in the resulting system.

 Lethbridge.book Page 70 Tuesday, November 16, 2004 12:22 PM

Section 3.3 71Frameworks: reusable subsystems

The latter three points are worth further discussion.

The quality of a software product is only as good as its lowest-quality reusable

component. It is no wonder then that many developers refuse to reuse

components in which they lack confidence. To combat this, development of

reusable components should be treated just like development of complete

applications. You need to do proper domain and requirements analysis for the

component; to design and document it properly; and to ensure its quality

through testing and inspection. We will discuss these activities later in the book.

In addition, it is important that software engineers be always available to

properly maintain a reusable component. If all of the above are performed, then

the component should be of high quality and hence it is more likely to be reused.

The process of developing reusable components, as part of a larger software

project, can have significant benefits, even if the components are never reused

outside the project. Looking at a problem at a more general level tends to make

it easier to understand: details relevant to only certain specific cases are

discarded, which leads to better abstractions and a simpler structure of the

resulting design. Also, the very process of developing reusable components

separately from their target system reduces the interconnections among parts of

the system, a quality we will call low coupling, and discuss in detail in Chapter

9. This low coupling makes the resulting application easier to understand,

modify and test.

In addition to simplifying design, reusable software tends to be more reliable.

The more places the reusable components are used, the more testing they get.

Also, they will be used in different contexts, thus their weak points are more

likely to be exposed. When developing a new system, you can substantially

increase confidence in it by composing it mostly of components that have

already been thoroughly validated.

Making it possible to find reusable components
Even if reusable components are available, software engineers must be able to

find them easily. An essential activity therefore is to carefully catalog and

document all the reusable components.

This catalog must be easy to search and must be kept up to date. In particular,

it is important to drop or deprecate older components that have been found to

be unreliable or have been superseded by better components. Deprecating a

component means declaring that it should not be used in subsequent designs,

but remains available to support existing designs that incorporate it.

3.3 Frameworks: reusable subsystems

Developing and using frameworks is an excellent way to promote reuse and

reusability.

 Lethbridge.book Page 71 Tuesday, November 16, 2004 12:22 PM

72 Chapter 3
Basing software development on reusable technology

The key principle behind frameworks is as follows: applications that do

different but related things tend to have similar designs – in particular, the

patterns of interaction among the components tend to be very similar. This can

be true even if the applications are in quite different domains. To develop a

framework, you identify the common design elements and develop software

that implements these design elements in a reusable way.

The key thing that distinguishes a framework from other kinds of software

subsystem is that a framework is intrinsically incomplete. This means that there

are certain classes or methods that are used by the framework, but which are

missing.

The missing parts are often called slots. The application developer fills in these

slots in an application-specific way to adapt the framework to his or her needs.

The more slots that the application developer must fill, the more complex the

framework is to use. At the same time, a framework with many slots tends to be

more flexible and therefore you are more likely to be able to reuse it to create a

wide range of applications across different domains.

Frameworks also usually have hooks: these are like slots, except that they are

places where developers can add optional functionality of different kinds. We

will see examples of hooks and slots in the framework we present later in this

chapter.

Developers using frameworks not only fill slots and hooks, but they also use

the services that the framework provides, i.e. methods that perform useful

functions. The set of services, taken together, is often called the Application

Program Interface, or API.

A framework enables the reuse of both design and code. The user of a

framework not only reuses the overall design envisioned by the framework’s

designer, but also a body of code that implements that design.

The following are some examples of frameworks:

■ A framework for payroll management. Most businesses have software that

includes a payroll module. The rules and features needed in a payroll system

will differ considerably, depending on the type of business, the local

jurisdiction and other software the company uses. However, basic elements

such as making regular payments, and computing taxes and other deductions,

will always exist. Although it is possible to purchase complete payroll

applications, many businesses are of sufficient complexity that such

applications do not implement all the needed features and rules. Instead of

developing a custom payroll package from scratch, several businesses could

adapt a common framework to their individual needs.

Definition: a framework is reusable software that implements a generic solution to a
generalized problem. It provides common facilities applicable to different
application programs.

 Lethbridge.book Page 72 Tuesday, November 16, 2004 12:22 PM

Section 3.3 73Frameworks: reusable subsystems

■ A framework for a frequent buyer ‘club’. In order to encourage loyalty,

many companies have a system that awards points to customers based on

the amount they purchase. The details of such systems will differ from

company to company, but they all have a lot in common. A company

implementing a new frequent buyer club would do well to base it on a

framework in order to avoid the cost of developing a system from scratch.

An airline frequent-flier plan could be built using the same framework

since it is merely a special kind of frequent buyer club.

■ A framework for course registration. Each institution has its own

academic rules, hence it is difficult to create a commercial application that

can be bought off the shelf to automate student information systems.

However, when software engineers are developing or replacing student

information systems, they could benefit from basing their designs on a

common framework.

■ A framework for e-commerce web sites. Most e-commerce web sites are

built on the same general model. There is a list of products to pick from;

when an item is selected it is added to a shopping cart; the site then

prompts for personal information and arranges for secure payment.

Individual web sites will want to have special features to differentiate

themselves in the market. However, developers could save a lot of work if

they had a framework that implemented the above general model.

Frameworks and product lines
A product line (or product family) is a set of products built on a common base

of technology. The various products in the product line have different

features to satisfy different market requirements. Many consumer products

are sold in product lines. For example, a company producing microwave

ovens will likely produce a very basic model that they can sell cheaply, and

successively more expensive models with increasingly sophisticated

features.

The software industry is following the product-line model more and

more. Underlying a software product line is a framework containing the

software technology common to all the products in the line. Each product is

then produced by varying the modules used to fill the hooks and slots; new

product variations can be produced quickly and easily.

For example, the software controlling a line of microwave ovens will be

based on a common framework. Each model in the line will then have

different combinations of software and hardware features. Doing this is far

more economical than designing each model separately.

Product lines are also found in many generic software products: you can

often purchase stripped-down ‘demo’ or ‘lite’ versions of software, as well as

‘pro’ versions with extra features. Sets of software versions each tailored to

specific languages or countries also represent product lines.

 Lethbridge.book Page 73 Tuesday, November 16, 2004 12:22 PM

74 Chapter 3
Basing software development on reusable technology

Horizontal and vertical frameworks
A framework can be horizontal or vertical (Figure 3.1). A horizontal framework

provides general application facilities that a large number of applications can

use. For example, if many applications need to have a ‘preferences’ dialog that

allows users to specify many kinds of options, then a horizontal framework

could be designed that would provide general ‘preferences dialog facilities’ for

many different types of applications.

A vertical framework, often also called an application framework, provides

facilities that will allow easy development of a more specific class of application

programs. The microwave oven, frequent-buyer and course registration

frameworks are vertical in nature, while the e-commerce framework might be a

hybrid – a vertical framework composed of several horizontal frameworks that

perform the sub-functions (such as general secure payment facilities).

A vertical framework will have a more complete implementation, and may

have fewer slots and hooks. An interface in Java can be considered an extreme

example of a horizontal framework: there is no implementation, and all the

specified methods represent slots that must be filled.

An application will typically use only a subset of the framework’s services. For

example, a framework for a rental store could do such things as manage

membership, handle deposits, process rentals and returns, and compute

penalties for late returns. A developer using this framework to build an

application for a video rental store would likely ignore the facilities for handling

deposits, but would take advantage of the membership facilities. When building

a car-rental system, the opposite would be true.

Figure 3.1 Horizontal and vertical frameworks showing services (at the top) and fillers of

hooks and slots (at the bottom). One of the hooks is not filled

Slot

Vertical
framework

Code to be provided to adapt the framework
to the needs of the application

Services offered
by the framework

Hook

Application Application

Horizontal framework
Slot Hook HookSlot

 Lethbridge.book Page 74 Tuesday, November 16, 2004 12:22 PM

Section 3.3 75Frameworks: reusable subsystems

In Section 3.6, we will be studying a framework for the development of client–

server applications. This is a horizontal framework, since it is usable by a very

large number of applications that require a client–server architecture, but does

not itself provide any functions for the end-user.

Object-oriented frameworks
In the object-oriented paradigm, a framework is composed of a library of

classes. The set of services – the API – offered by the framework is defined by

the set of all public methods of the public classes.

Some of the classes in an object-oriented framework should be abstract. To

use the framework in the context of a new application, the developer creates

concrete classes that extend these abstract classes. The abstract methods in the

abstract classes are the slots that are filled when concrete methods are created in

the concrete subclasses.

Example 3.1 Imagine you are designing a framework that different libraries (of books, not

code) would be able to adapt to meet their needs. What kind of facilities would

you want to provide if you were designing such a framework? In what ways do

libraries differ such that they would need to use a framework rather than a

complete application?

Answer: common facilities a library framework might provide include:

■ A user interface providing standard kinds of searches (e.g. by author, title and

subject) and the ability to browse through lists of books and periodicals, or

authors.

■ Basic classes representing books, clients, loans etc., along with common

operations that can be done with those classes.

Differentiating features of library systems might include:

■ The cataloging scheme (e.g. Dewey Decimal or Library of Congress).

■ The kind of information kept about each client and book (e.g. clients may have

different privileges, such as to be able to borrow only certain types of books).

■ Rules for types and lengths of loans, putting items on hold, payment of fines

etc.

■ The particular types of items that can be borrowed from the library. All

libraries have books, but libraries may contain such specialized items as videos,

maps or rare books that need special treatment.

■ Specific data unique to this library such as a specific style of barcodes placed on

books, multilingual support, etc.

■ Specific hardware the library possesses, such as particular types of barcode

scanners and checkout machines.

 Lethbridge.book Page 75 Tuesday, November 16, 2004 12:22 PM

76 Chapter 3
Basing software development on reusable technology

■ The security mechanisms, such as who has authority to do what kind of

operations. Login passwords in a university library might, for example, be

integrated with login passwords for other university systems.

■ Integration of the system with other systems such as online library resources,

existing databases of books and periodicals, accounting systems (e.g. for fines).

Exercises

E39 Imagine you are designing a framework for the following classes of

applications. Describe what services you might put in the framework. Answer

this question using a simple list of things the system should be capable of

doing.

(a) A reservation framework. This could be expanded into an application to

reserve anything that needs reserving, e.g. dental appointments, meetings,

tickets at the theater, etc.

(b) A scheduling framework. This could be expanded for scheduling meetings,

trains, classes etc.

(c) A language-processing framework. This could be expanded to process a

programming language, a database query language or a command

language.

(d) An editing framework. This could be expanded to allow editing of text,

spreadsheets, and elements of different kinds of diagrams. Think about

common features of editing tools provide.

E40 For each of the three frameworks in the last exercise, what differentiating

features would software developers need to provide to build specific

applications? What hooks and slots should therefore be available?

E41 List as many types of applications as you can think of that might benefit from

the development of the frameworks in Exercise E39, so as to reduce the work

required to develop similar applications from scratch.

E42 Imagine an airline company asks you to develop the software for its frequent-

flier program. You choose to attack the development of this system by first

developing a framework. You consider two approaches:

(a) Developing and then adapting a vertical framework that provides the

facilities needed by several types of frequent-flier programs.

(b) Developing and then adapting a more horizontal framework that

encompasses any frequent-buyer program such as a hotel priority club, a

book club or a video rental store membership club.

 Lethbridge.book Page 76 Tuesday, November 16, 2004 12:22 PM

Section 3.4 77The client–server architecture

For each of these two approaches, sketch the resulting framework in terms of: (i)

the services it would have to offer, (ii) the slots that should be present, and (iii)

the hooks that would be useful.

E43 Prepare arguments for both sides of the following debate question: ‘Resolved:

when asked to develop a new frequent-flier system, developing a new frequent-

flier framework would be a waste of time.’

3.4 The client–server architecture

Software architecture is the branch of software engineering that deals with how

to organize and connect a set of software modules so that they can work together

with each other. There are many well-known architectures – one of the most

widely used is the client–server architecture. We will use this as the basis for

much of the design work in this book; we will look at other architectures in

Chapter 9.

We present the client–server architecture here since we want to introduce a

client–server framework upon which we will build some example applications.

You will find, in the coming sections, all the details you need to learn in order to

understand how our client–server framework works. Once you understand this

material, you will be able to reuse the framework to build a wide variety of

applications.

A distributed system is a system in which computations are performed by

separate programs, normally running on separate pieces of hardware, that co-

operate to perform the task of the system as a whole. A server is a program that

provides some service for other programs that connect to it using a

communication channel. A client is a program that accesses a server. A client

may access many servers to perform different functions, and a server may be

accessed by many clients simultaneously. A client–server system is a distributed

system involving at least one server and one client. A peer-to-peer system is a

client–server system in which programs can act as both client and server for

each other.

Figure 3.2 illustrates a server program communicating with two client

programs. The vertical lines represent the three programs involved. After

connecting, Client 1 sends a message, receives a reply and disconnects. Client 2

connects while Client 1 is still connected; it simply sends a message and then

disconnects. This diagram is an example of a UML sequence diagram; we will

study such diagrams in more detail in Chapter 8.

In general, the components of a client–server system interact as follows:

■ The server starts running.

■ The server waits for clients to connect. This waiting process is called listening.

■ Clients start running and perform various operations, some of which require

connecting to the server to request a service.

 Lethbridge.book Page 77 Tuesday, November 16, 2004 12:22 PM

78 Chapter 3
Basing software development on reusable technology

■ When a client attempts to connect, the server accepts the connection if it is

willing.

■ The server waits for messages to arrive from connected clients.

■ When a message from a client arrives, the server takes some action in response,

then resumes waiting.

■ Clients and servers continue functioning in this manner until one of them

decides to shut down.

Normally, the action taken by the server includes sending a message back to the

client. Most servers have to be able to handle connections from many clients and

respond to messages from all the connected clients. How this is accomplished

will be described below.

It is possible for the same program to be both a client and a server at the same

time. For example, a database server might connect to another server in order

to obtain additional data. It is also possible for the client and server to be located

on the same computer, and run as separate processes. However, it is quite typical

for them to be located on separate computers, perhaps in different geographical

locations.

Table 3.1 lists some important kinds of systems that use the client–server

architecture.

Comparing the client–server architecture to alternatives
You could also have some mechanism other than client–server communication

for exchanging information. For example, one program could write a file, and

another program could read the file, or else both programs could read and write

Figure 3.2 A server program communicating with two client programs

disconnect

send message

disconnect

send reply

listen for connections

stop listening

connect

send message

connect

Server: Client2:Client1:

 Lethbridge.book Page 78 Tuesday, November 16, 2004 12:22 PM

Section 3.4 79The client–server architecture

Table 3.1 Example client–server systems

System Clients Server

The World Wide Web Browsers that display web

pages and post forms, e.g.

Netscape Navigator or

Microsoft Internet Explorer

Web servers that manage sets

of web pages (as well as CGI

programs and servlets), and

send information to browsers

when sent a URL

Email Programs that read and send

email. For example, Microsoft

Outlook, Eudora

A post-office program that

receives email from remote

sites and holds it until an

email-reading client is

activated. The program also

forwards outgoing mail from

the client to other sites

Network file system Programs on any computer

that access files that happen to

be on other computers

A program whose main

purpose is to allow clients on

other computers to access files.

Unix NFS and Novell NetWare

are examples

Transaction processing system Programs that send specific

requests to perform some kind

of transaction, such as debiting

a bank account or booking an

airline ticket

A program that centralizes all

the functions of some business

and processes transactions

when they arrive

Remote display system Programs that want to display

information on the screen.

Many Unix programs are

capable of displaying graphical

output on any computer

running an X-Windows server

A program that manages the

screen and allows applications,

perhaps running on other

computers, to display their

output. A Unix X-Windows

server is an important example

Communication system A program that allows users to

send a message or maintain a

conversation with users on

another computer

A program that routes

messages. It can have features

such as ‘forwarding’ that

people are familiar with from

the telephone network

Database system Any application program that

wants to query a database

A database management

system that responds to

requests to query or update the

database

 Lethbridge.book Page 79 Tuesday, November 16, 2004 12:22 PM

80 Chapter 3
Basing software development on reusable technology

the same database. This could work for some kinds of communication, but

would normally result in more complex and slower programs.

A single program that does everything can also be an alternative to a client–server

system. However, the client–server architecture can have the following advantages:

■ The computational work can be distributed among different machines.

Designers can choose to centralize some computations on the server and

distribute others to the clients. If everything is done on the server, then a

powerful computer may be needed. On the other hand, if the clients take care

of some computations then the server’s workload will be lighter.

■ The clients can access the server’s functionality from a distance.

■ The client and server can be designed separately, therefore they can both be

simpler than a program that does everything. The development work can be

done by independent groups, each only concerned with one part of the system

(plus how the client and server communicate). Since the groups may be able to

work on the client and server in parallel, they may be able to complete the

whole system sooner.

■ All the data can be kept centrally at the server, thus making it easier to assure its

reliability. For example, it can be easier to ensure that regular backups are made

of a single server’s data, rather than trying to separately back up data saved by

many separate programs.

■ Conversely, distributing data among many different geographically distributed

clients or servers can mean that if a disaster occurs in one place, the loss of data

is minimized.

■ The information can be accessed simultaneously by many users. It is possible to

accomplish this using a single large program, but that approach tends to be

more complex.

■ Competing clients can be written to communicate with the same server, and

vice versa; for example, different web browsers can communicate with the same

web server. This can encourage innovation.

Exercises

E44 For each of the following systems, discuss under what circumstances it would

be worth making it into a client–server system, as opposed to just creating a

single program that does everything. In the case of a client–server system,

indicate what work could be done by the server, and what by the client. In

answering this question, make your best judgment, using whatever knowledge

you already have about software applications.

(a) A word processor.

(b) A system for doctors to look up patient records when visiting a patient.

 Lethbridge.book Page 80 Tuesday, November 16, 2004 12:22 PM

Section 3.4 81The client–server architecture

(c) A home alarm system that monitors various sensors such as motion

detectors, smoke detectors and window-opening sensors.

E45 If you were designing a server for the following classes of applications, list the

kinds of main activities that you might expect the server to do:

(a) A server for an airline reservation system.

(b) A server that contains the master list of toll-free telephone numbers that

different telephone companies will need to access.

(c) A server that forms the center of a building alarm system; clients are

individual controllers for devices around the building.

(d) Your favorite site for buying books on the Internet.

(e) A web-based course registration system.

Capabilities that must be provided when designing a server
A server has the following main activities to perform:

1. The server must initialize itself so that it is able to provide the required service.

For example, a server that handles airline reservations might load data

describing the available flights.

2. It must start listening for clients attempting to connect. Until it starts listening,

any client that attempts to connect will not succeed.

3. It must handle the following types of events originating from clients, which can

occur at any time:

❏ It accepts connections from clients. This process will normally involve

some form of validation to ensure that the client is allowed to connect.

While a client is connected, the server keeps a record of the connection.

❏ It reacts to messages from connected clients. This is the most important

thing the server does. In an airline server a message could be a request to

book a passenger, or a query to find out who is booked. In response to a

message from a client, a server can do many types of things, including

performing computations and obtaining information. Normally the server

will send some information back to the requesting client; it might also send

a message to another client or broadcast messages to many clients at once.

❏ It handles the disconnection of clients. A client can request disconnection

by sending a message to the server or by simply disconnecting itself; it

might ‘disappear’ if it crashes, or if its network connection goes down;

finally, the server might force a client to disconnect if the client is not

‘behaving’ well.

4. The server may be required to stop listening. This means that it will no longer

 Lethbridge.book Page 81 Tuesday, November 16, 2004 12:22 PM

82 Chapter 3
Basing software development on reusable technology

accept new client connections, but it will continue to serve the currently

connected clients. This may happen when the number of connected clients

becomes too high; in such a situation the server rejects new clients so that it

does not run out of resources such as memory. When it has enough resources

again, it can start listening again. The server may also choose to stop listening

prior to shutting down, allowing the connected clients time to terminate their

work.

5. It must cleanly terminate, i.e. shut down, when necessary. Shutting down

cleanly means doing such things as notifying each client before terminating its

connection.

The above main activities of a server are illustrated in Figure 3.3, which is an

example of a UML state diagram. We will examine such diagrams in detail in

Chapter 8; for now, we believe that the diagram is sufficiently self-explanatory.

Later on in this chapter, we will see that in order to perform its work

effectively, a server needs to use several concurrent threads.

Capabilities that must be provided when designing a client
A client has the following main activities to perform:

1. Like the server, a client must initialize itself so that it is able to communicate

with the server. For example, it needs to know the network address of the

server.

2. It performs some work, which includes:

❏ Making a decision to initiate a connection to a server. If connecting to the

server fails, or the server rejects the connection, the client may try again or

may give up.

❏ Sending messages to the server to request services.

Figure 3.3 The main activities performed by a typical server

Waiting for Connections

handle
disconnection

start listening stop listening
terminate

For each connection:

For the server as a whole:

accept connection

Waiting

Initializing

Handling a Connection
do/ react to messages

 Lethbridge.book Page 82 Tuesday, November 16, 2004 12:22 PM

Section 3.4 83The client–server architecture

3. It must handle the following types of events originating from the server, which

can occur at any time:

❏ It reacts to messages coming from the server. Often, messages received

from the server alternate with messages sent to the server – in other words,

the messages from the server are replies to the client’s requests. Sometimes,

however, an unanticipated message might arrive from the server; for

example, to announce that some new data is available or that the server is

shutting down.

❏ It handles the disconnection of the server. This might occur because the

server crashed or the network failed. It might also occur because either

the client or server requested disconnection. The important issue is that the

client knows it is no longer connected and makes decisions accordingly;

one possible action is to attempt to reconnect.

4. It must cleanly terminate. This includes disconnecting from a server if it is still

connected.

The above main activities of a client are illustrated in Figure 3.4, which shows

one possible sequence of activities. Note that the ‘regular’ work of the client may

need to proceed concurrently with the process of responding to events

originating from the server. This is indicated in Figure 3.4 by the horizontal bars

that show execution dividing into two distinct paths. We will consider

concurrency in more depth in the next subsection.

Figure 3.4 is an example of a UML activity diagram; we will discuss these

further in Chapter 8.

Concurrency in client–server systems
Client–server systems are inherently concurrent because the server runs at the

same time as the clients, normally (but not necessarily) on different computers.

Figure 3.4 The main activities performed by a typical client

initiate a connnection
to a server

respond to events
triggered by the server

do/ respond to messages
handle server disconnection

interact with the user,
sending messages to the
server as necessary

terminate

initialize

do/

 Lethbridge.book Page 83 Tuesday, November 16, 2004 12:22 PM

84 Chapter 3
Basing software development on reusable technology

However, there is an added level of concurrency in both the client and server

sides. As mentioned above, the client will normally be doing the following

things concurrently:

■ Waiting for interactions with the end-user, and responding when interactions

occur.

■ Waiting for messages coming from the server, and responding when messages

arrive.

These generally have to be implemented using multiple threads of control that

can be concurrently executed. Without this mechanism, when the client is

waiting for one kind of input, it will not be able to respond to the other kind of

input. An exception to this can occur in clients that do not need to interact with

the user in any way.

Similarly, the server should normally have concurrent threads which do the

following:

■ Waiting for interactions with the user who is in charge of the server, and

responding as necessary. As with the client, some servers can dispense with

user interaction, but most will need a thread to handle basic controlling

commands.

■ Waiting for clients to try to connect and establishing connections as needed.

■ For each connected client, waiting for messages coming from that client, and

responding when messages arrive.

Servers thus normally operate with at least two concurrent threads, and in

general n+2 threads where n is the number of connected clients. Figure 3.5

illustrates the various threads executing in a typical client–server system. In this

diagram only one client (client A) is shown communicating with the server;

however, a thread for a second dormant client (client B) is also shown.

Thin- versus fat-client systems
The work of a client–server system can be distributed in several different ways.

In a thin-client system, the client is made as small as possible and most of the

work is done in the server. In the opposite approach, called a fat-client system,

as much work as possible is delegated to the clients. The two approaches are

illustrated in Figure 3.6.

An important advantage of a thin-client system is that it is easy to download

the client program over the network and to launch it. In Java, applets are usually

thin clients because it is desirable for them to download rapidly. An advantage

of fat-client systems is that since more computations are distributed to the

clients, better use is made of available computational resources; the server can

therefore be smaller or can be made to handle more clients.

One of the main considerations in choosing between a fat-client and a thin-

client system is how intensively the system will use the network to communicate

 Lethbridge.book Page 84 Tuesday, November 16, 2004 12:22 PM

Section 3.4 85The client–server architecture

– making the wrong choice can sometimes result in an overloaded network.

Depending on the nature of the system, either a fat-client or a thin-client system

may take the fewest network resources. In some cases, a thin-client system will

need to communicate the least because it generally sends only simple user

requests to the server. On the other hand, a thin client might need to

communicate with the server much more frequently than a fat client and to

download voluminous results of the server’s calculations.

Exercise

E46 In each of the following systems, list: (i) the work normally performed on the

server side; (ii) the work normally performed on the client side; (iii) the types

of information transmitted in both directions over the network; (iv) whether

the system is thin-client, fat-client or intermediate; (v) what could be done to

Figure 3.5 Threads in a client–server system

Figure 3.6 A thin-client system (a) and a fat-client system (b). The clients are at the top and the

servers are at the bottom

kill client
disconnect

reply to message

create

reply to message

connect

display
disconnect

display reply

display reply

create

send message

send message

Client Side (Client A) Server Side

interact
with user

wait for
server events

wait for
connections

wait for
messages:

client A

wait for
messages:

client B

interact with
server user

simple
commands

results
for display

Heavy computation

(a)

Heavy computation

Light computation

Light computation

requests
for services

results
of requests

(b)

Heavy computation

Light computation

 Lethbridge.book Page 85 Tuesday, November 16, 2004 12:22 PM

86 Chapter 3
Basing software development on reusable technology

increase or decrease the proportion of work done on the client side; (vi) what

effects such changes would have on the network.

(a) to (e) The systems from Exercise E45.

(f)The world wide web in general (with browsers and web servers).

(g)The email system that you use.

Messages in a client–server system: communications protocols
The types of messages the client is allowed to send to the server form a language.

The server has to be programmed to understand that language. Similarly,

another language consists of the types of messages the server is allowed to send

to the client.

When a client and a server are communicating, they are in effect having a

conversation using these two languages. As with a human conversation, there

have to be rules to ensure, for example, that the communicating parties take

turns to speak. The rules also describe the sequences of messages that the client

and server must exchange, in order to reach agreement on something or to

accomplish some other task.

The two languages and the rules of the conversation, taken together, are called

the protocol. The design of protocols can be very complex; in simple systems,

such as those discussed in this book, the protocol is merely a list of service

requests and their responses.

Example 3.2 Sketch a protocol for a simple program for manipulating files on a remote

computer.

The following illustrates the kinds of messages sent between clients and the

server.

The above protocol does not deal with such things as security and logging in;

nor does it suggest how the information would be presented to the user in a

friendly way.

Messages to server Possible replies to client

getFile name fileContent, accessDenied, noSuchFileOrDir, failed

saveFile name content successful, accessDenied, failed

rename oldname newname successful, accessDenied, noSuchFileOrDir, failed

delete name successful, accessDenied, noSuchFileOrDir, failed

listDir fileList, accessDenied, failed

changeDir name successful, accessDenied, noSuchFileOrDir, failed

createDir name successful, accessDenied, failed

 Lethbridge.book Page 86 Tuesday, November 16, 2004 12:22 PM

Section 3.5 87Technology needed to build client–server systems

Exercise

E47 Propose a simple protocol for the systems described in question E45.

Tasks of the software engineer when developing a client–server system
When designing a client–server system, the software engineer should make use

of a framework that provides much of the underlying mechanism. We will

describe such a framework later; however, the designer still has four key things

to design:

1. The primary work to be performed by both client and server; i.e. the

computations to be performed, data to be stored, etc.

2. How the work will be distributed – thin client, fat client, or intermediate.

3. The details of the set of messages that will be sent from the client to the server

and vice versa in order to accomplish the main activities, i.e. the

communications protocol.

4. What has to happen in the client and server when they start up, handle

connections, send and receive messages, and terminate.

3.5 Technology needed to build client–server systems

In order to build a client–server system you need a computer network as well as

software facilities for sending and receiving messages. There are several

standards for data communication, and most modern programming languages

include suitable data communication packages. This section discusses basic

Internet and Java technology you can use to construct client–server systems.

Some important network concepts
In order to be able to understand how a client and a server communicate with

each other, you must understand a few basic concepts about computer networks.

Many books have been written about networks, but the few details discussed

here will be enough to enable you to understand client–server design.

Since most computers today are connected to the Internet, we will assume

that clients and servers will communicate with each other using the Internet’s

main communications mechanism, TCP/IP.

‘IP’ stands for ‘Internet Protocol’. The main function of IP is to route messages

from one computer to another. Long messages are normally split up into small

pieces which are sent separately and then reassembled at the destination

computer. Since the Internet is a large heterogeneous network of many

computers and other devices, this routing process is quite complex. Luckily,

Internet users rarely need to worry about the complexity.

 Lethbridge.book Page 87 Tuesday, November 16, 2004 12:22 PM

88 Chapter 3
Basing software development on reusable technology

‘TCP’ stands for ‘Transmission Control Protocol’. TCP handles connections

between two computers. A connection lasts for a period of time, during which

the computers can exchange many IP messages. In addition to simply

exchanging data, the computers use TCP to establish the connections, and to

assure each other that the messages they have sent each other have been

satisfactorily received. There is another mechanism called UDP that can be used

instead of TCP; however, we will not discuss UDP here.

Each computer using IP is called a host and has a unique address. In IP

Version 4, you may see this address written as four numbers (each from 0 to

255), separated by dots, such as 128.37.100.100; in IP version 6, to which many

networks are moving, the address appears as eight hexadecimal numbers

separated by colons. More commonly, however, you will see an IP address as a

more human-understandable dot-separated series of words such as

‘www.mcgraw-hill.com’. The numeric and word forms can be used

interchangeably. The numeric form is normally called the IP address, while the

word form is normally called the host name. If you strip off the first component

of the host name (everything up to and including the first dot) then the

remaining part typically represents a sub-network on which the host is running;

this is often called a domain. In the above example, ‘mcgraw-hill.com’ is a

domain. The ‘.com’ is a top-level domain.

Several servers can run on the same host. Each server is identified by a port

number, which is an integer from 0 to 65535. In order to initiate communication

with a server, a client must know both the host name and the port number. By

convention, port numbers from 0 to 1023 are reserved for use by specific types

of servers; for example, web servers normally use port 80. Knowing this

convention, a web browser that is only given a host name (in a URL) can connect

to a web server by assuming that the server is at port 80. We therefore should not

How to find out the IP address and host name of a computer
Using a web browser, you can normally find out the IP address of your computer (and a lot of other
information about your network connection) at privacy.net/analyze/.

In Windows XP you can find the IP address by first opening the ‘Network Connections’
control panel. Then click on the icon for a connection and look in the ‘Details’ tab. You can
also issue the command ‘ipconfig /all’ to obtain very detailed information including your host
name.

On Mac OS X, you can find out the IP address by looking at the ‘TCP/IP’ tab of the
‘Network Preferences’ panel.

On most varieties of Unix, including Mac OS X, or Linux, you can find out your host name
by issuing the commands hhhhoooossssttttnnnnaaaammmmeeee or uuuunnnnaaaammmmeeee ----nnnn. You can normally look up the IP address
corresponding to a host name using yyyyppppccccaaaatttt hhhhoooossssttttssss |||| ggggrrrreeeepppp <<<<hhhhoooossssttttnnnnaaaammmmeeee>>>>. In addition, you can look
up the host name corresponding to an IP address using the same command sequence.

On many computers (including both Windows and Mac) you can issue the command
nnnneeeettttssssttttaaaatttt ----aaaa ----pppp TTTTCCCCPPPP to determine which ports are in use.

 Lethbridge.book Page 88 Tuesday, November 16, 2004 12:22 PM

Section 3.5 89Technology needed to build client–server systems

use port 80 for any other kind of server since confusion will result. In this book,

we will by default run servers on port 5555 if it is not already occupied by some

other server. In general, when you create a new server, you must pick a port

number and publish both the host name and port number so that clients know

where to connect. Taken together, the host name and port number are often just

called the address of the server. By convention, if a client wants to talk to a server

on the same computer, it can use the special host name localhost (IP address

127.0.0.1).

Establishing a connection in Java
Java includes a package specially designed to permit the creation of a TCP/IP

connection between two applications: it is called java.net. The class Socket is the

central element of this package; instances of this class encapsulate information

concerning each connection. Both the client and the server must have an

instance of Socket in order to exchange information.

Before a connection can be established, the server must start listening to one

of the ports. To do this, it uses the resources of the class ServerSocket. This is

typically done as follows:

ServerSocket serverSocket = new ServerSocket(port);

where port is the integer representing the port number on which the server

should be listening.

In order for a client to connect to a server, it uses a statement like the

following, passing the host name (or numeric IP address) and port number of

the server:

Socket clientSocket = new Socket(host, port);

For the connection to be accepted, the server must have a thread constantly

listening for connections using a statement like the following, embedded in a

loop:

Socket clientSocket = serverSocket.accept();

The above statement will wait indefinitely in the accept method until a client

tries to connect, then it will try to create an instance of Socket to handle the new

connection. If this is successful, both client and server now have instances of

Socket and can communicate freely with each other.

All of the above assumes the network is working properly, and appropriate

values are specified for host and port. If communication fails for any reason,

these statements will throw an IOException. Appropriate code must be written to

handle such exceptions, e.g. notifying the user of the failure or trying again.

Once a connection is established, the exchange of communication may

commence. From now on, both client and server can send messages to each

other at any time. The connection is said to be symmetric, meaning that the

client communicates with the server in the same way as the server

communicates with the client.

 Lethbridge.book Page 89 Tuesday, November 16, 2004 12:22 PM

90 Chapter 3
Basing software development on reusable technology

Normally there will be two distinct streams of information: from server to

client and from client to server. Each program uses an instance of InputStream
to receive messages from the other program, and an instance of OutputStream to

send messages to the other program. These classes are found in the package

java.io, and their instances can be created as follows:

output = clientSocket.getOutputStream();

input = clientSocket.getInputStream();

When a message is sent from one program using its OutputStream, it may be

read by the other connected program using its InputStream. However, InputStream
and OutputStream deal with messages composed merely of bytes, the most

primitive form of data. Programmers often want to exchange more

sophisticated types of data without having to worry about how to translate them

into a byte stream. To do this, Java provides a series of filters which convert the

raw bytes into other forms. For example, DataOutputStream and DataInputStream
allow direct transmission of the Java primitive types such as int and double.

Another pair of filters, ObjectOutputStream and ObjectInputStream, allows the

exchange of Java objects. For maximum flexibility, we will use this latter pair of

classes in our client–server framework.

To send an object, Java uses a process called serialization. This is a technique

by which every object is converted by an ObjectOutputStream into a binary form

for transmission, and then reconstructed when it is received by an

ObjectInputStream. Most objects can be serialized; the only requirements are that

they be instances of classes that implement the interface java.io.Serializable,

and that the data in their instance variables also be serializable. Serialization is

also the mechanism used to save objects into a binary file.

In order to use an object stream, you must wrap it around a binary stream in

the following manner:

output = new ObjectOutputStream(clientSocket.getOutputStream());

You can then send an object thus:

output.writeObject(msg);

In order to receive objects, you create an object input stream thus:

input = new ObjectInputStream(clientSocket.getInputStream());

and then arrange for the following statement to be executed in a loop:

msg = input.readObject();

The readObject method will wait until an object is received over the socket, or

until an I/O error occurs. An I/O error will occur if the program at the other end

of the connection is terminated.

 Lethbridge.book Page 90 Tuesday, November 16, 2004 12:22 PM

Section 3.6 91The Object Client–Server Framework (OCSF)

3.6 The Object Client–Server Framework (OCSF)

In the next few sections we present a framework that can be used to develop any

client–server system. We call this framework OCSF (Object Client–Server

Framework) since it can be used to build a client–server system that exchanges

Java objects. We will use the OCSF for the systems we develop in this book. In

Chapter 6 we will extend the framework to make it more flexible.

You should attempt to understand completely how the OCSF functions. Not

only will doing so ensure you understand the principles of frameworks and

client–server systems in general, but it will also teach you about some of the

subtleties of software design. Later in the book, some of the design issues raised

here will be revisited.

To help you understand the framework, we provide a simple application in

Section 3.9 that uses it. We also provide some project exercises where you

change the application – modifying an existing application is one of the best

ways to learn how it works.

The core of OCSF consists of three classes: one to implement the client and

two to implement the server. The core classes are illustrated in Figure 3.7, along

with their most important methods. The line with the asterisk connecting
AbstractServer to ConnectionToClient indicates that there are many instances of

ConnectionToClient associated with the server. The labels such as «control»,

«hook» and «slot» divide the methods into categories, which we will describe

shortly.

In Chapter 6, we will discuss some additional classes that extend OCSF; there

is no need to know anything about those to start working with OCSF.

Figure 3.7 The essentials of the core OCSF classes

∗

AbstractClient

openConnection()

closeConnection()
sendToServer()

connectionEstablished()
connectionClosed()
connectionException()

listen()
stopListening()
close()

clientConnected()
clientDisconnected()

serverStarted()

handleMessageFromClient()

serverStopped()

sendToAllClients()

getClientConnections()

serverClosed()

clientException()

listeningException()

AbstractServer ConnectionToClient

sendToClient()
close()

setInfo()
getInetAddress()

1«control»

«hook»

handleMessageFromServer()
«slot»

«accessor»
isConnected()
getPort()
setPort()
getHost()
setHost()
getInetAddress()

«control»

«hook»

«slot»

«accessor»
isListening()

getPort()
setPort()
setBacklog()

getNumberOfClients()

getInfo()

 Lethbridge.book Page 91 Tuesday, November 16, 2004 12:22 PM

92 Chapter 3
Basing software development on reusable technology

Programmers using OCSF never modify the framework’s classes. Instead, a

programmer should do the following to create an application:

■ Create subclasses of the abstract classes in the framework.

■ In these subclasses, write implementations of certain slot methods that are

declared to be abstract in the framework classes.

■ Also in the subclasses, override certain methods that are explicitly designed to

be overridden. These are the hooks of the framework.

■ In various parts of the application, call public methods that are provided by the

framework. These public methods, which are the services of the framework,

allow the application designer to control the client or server, and to find out

information about them.

We will first discuss in detail the client side of the framework, and then the

server side. In this chapter, your main objective should be to understand how to

use the framework. To do that, you will have to understand how it works to some

extent; however, you will probably obtain a more detailed understanding of that

in later chapters.

Complete source code of the OCSF is found at www.lloseng.com.

3.7 Basic description of OCSF – client side

The client side of the OCSF consists of a single class AbstractClient. This is an

abstract class that provides all of the facilities needed to connect and exchange

objects with servers – with one exception: AbstractClient must be subclassed in

order to implement the method handleMessageFromServer that takes appropriate

action when a message is received from a server.

AbstractClient implements the Runnable interface. This is because we want the

message waiting activity of its instance to run as a separate thread as described

earlier. As an implementer of Runnable, AbstractClient has a run method which

contains a loop that executes for the lifetime of the thread, receiving messages

from the server and responding to them. We will discuss the internals of the run
method a bit later.

The public interface of AbstractClient
The public interface to AbstractClient consists of the service methods that

software developers who are using the class can access. In OCSF, as in other

well-designed object-oriented systems, the public interface only provides a set

of methods that can be called – it does not permit direct access to any variables.

The public interface of AbstractClient consists of three kinds of methods: a

constructor, some methods that are used to control the client, and some methods

used to access basic information about the client.

 Lethbridge.book Page 92 Tuesday, November 16, 2004 12:22 PM

Section 3.7 93Basic description of OCSF – client side

Public constructor. There is only one simple constructor in this class. It merely

initializes variables representing the host and the port of the server to which the

client will connect.

Public controlling methods. These methods provide services and do the bulk

of the work of controlling the client. They are declared final so that they cannot

be overridden by subclasses. The final declaration ensures that subclasses

cannot create versions that contain bugs; however, it also means that subclasses

cannot correct any design flaws in these methods. That puts a particularly

strong responsibility for quality control into the hands of the framework’s

designers. The three key controlling methods are:

■ openConnection: this connects, if it can, to a server at the host and port specified

in the constructor (or subsequently using setHost and setPort described below).

As soon as the connection to the server is established, this method starts the

thread which will then run until the connection to the server is terminated.

■ sendToServer: this sends a message to the server, if it can. The message can be

any object.

■ closeConnection: this stops the communication with the server and signals the

thread to stop looping and hence terminate

All three of the above methods will throw an IOException if they fail – callers have

to handle this in some way.

Utility accessing methods. These additional service methods are used to

inquire about the state of the client or make minor changes to that state. They

include:

■ isConnected: allows callers to inquire whether the client is currently connected

to a server.

■ getHostPort and getPort: allow callers to inquire which host and port the client

is connected to, or is prepared to connect to.

■ SetHost and SetPort: allow callers to change the host and port of a

disconnected client in preparation for the next call to openConnection.

■ getInetAddress: provides some detailed information about the connection.

The callback methods of AbstractClient
In addition to the public interface, AbstractClient also contains several hook

methods that are designed to be overridden by subclasses of the client, as well as

one abstract slot method. The hooks and slots are called when particular events

occur as the client operates. Methods like these are conventionally referred to as

callbacks, since they are not called by the application code, but rather they

represent calls back to the application code from methods in the framework.

 Lethbridge.book Page 93 Tuesday, November 16, 2004 12:22 PM

94 Chapter 3
Basing software development on reusable technology

Methods that may be overridden by subclasses (hooks). These may be

overridden by subclasses and are called when various potentially ‘interesting’

events happen. If developers of subclasses of AbstractClient are interested in

taking some action when these events occur, the developers can implement the

methods. The default implementations do nothing.

■ connectionEstablished: is called after a connection with a server is established.

■ connectionClosed: is called whenever a connection with the server is terminated

by the client.

■ connectionException: is called when something goes wrong with the

connection, such as when the connection is terminated by the server.

Method that must be defined in subclasses (slot). The only abstract slot method

in AbstractClient is named handleMessageFromServer. This must be defined in

subclasses and is called whenever a message is received from the server.

How an application developer should use AbstractClient
A developer who wants to design a client which uses the AbstractClient class

need only do the following:

■ Create a subclass of AbstractClient.

■ In this subclass, implement the handleMessageFromServer slot method to do

something useful with any messages coming from the server.

■ Arrange for some code somewhere to create an instance of the new subclass of

AbstractClient and to call openConnection.

In almost all clients, the developer will also want to do the following:

■ Arrange for some code somewhere to send messages to the server using the

sendToServer service method. It is possible to have a client that only receives

messages from a server, and hence does not call sendToServer, but that would be

rather unusual.

■ Implement the connectionClosed callback to do something intelligent, such as

notifying the user, when the connection to the server is terminated normally.

■ Implement the connnectionException callback to deal with abnormal

disconnection.

Not every application will need to use the other service methods, or override the

other callback method (connectionEstablished).

A few details of the private internals of AbstractClient
Software developers do not, strictly speaking, need to know much more than the

above to use AbstractClient. However, knowing a few details of how a class works

 Lethbridge.book Page 94 Tuesday, November 16, 2004 12:22 PM

Section 3.8 95Basic description of OCSF – server side

can help a developer to diagnose problems and feel more comfortable using the

class.

AbstractClient has the following instance variables:

■ A Socket, clientSocket, which keeps all the information about the connection to

the server.

■ Two streams, an ObjectOutputStream (output) and an ObjectInputStream (input),

that are used to transmit and receive objects using clientSocket.

■ A Thread, clientReader, that runs using AbstractClient’s run method.

■ A boolean variable, readyToStop, used to signal when the thread should stop

executing.

■ Two variables storing the host and port of the server.

The thread starts running when openConnection calls start which in turn calls run.

The loop inside run repeatedly waits for a message to come from the server by

calling the readObject method of the ObjectInputStream. When a message is

received, the run method then responds by calling the application’s

implementation of handleMessageFromServer.
Complete source code for AbstractClient is found on the book’s web site. You

may find it useful to study the code, following the above explanation. We suggest

you do the exercises at the end of the chapter to test your understanding.

3.8 Basic description of OCSF – server side

The server side of OCSF is slightly more complex than the client side since it has

two classes, not one. The two classes are needed because, as discussed in Section

3.4, the server has to implement both the thread that listens for new connections

(AbstractServer) and the threads that handle the connections to clients

(ConnectionToClient).

The public interface of AbstractServer
As with AbstractClient, there is a limited set of public methods (the API) that

provide all the services of this side of the framework.

The public constructor. AbstractServer has only one constructor, which takes a

port number on which the server will listen. The port number can be changed

later, if needed.

The public controlling methods. Similarly to the client side, the AbstractServer
has a set of methods that can be used by subclasses to perform useful functions.

■ listen: this creates the serverSocket that will listen on the port that was

specified in the constructor or by using setPort. It also starts this instance as a

thread that will, in the run method, repeatedly wait for new clients to connect.

 Lethbridge.book Page 95 Tuesday, November 16, 2004 12:22 PM

96 Chapter 3
Basing software development on reusable technology

■ stopListening: this method signals to the run method controlling the thread to

stop looping, and therefore terminate. No new clients will be accepted until the

listen method is called again. Any connected clients can still communicate

with the server because their connections are controlled by separate threads.

■ close: this does the same thing as stopListening, but goes further: it

disconnects all connected clients and closes the server socket.

■ sendToAllClients: this attempts to send a message to all clients.

The methods listen and close can throw an IOException.

Utility accessing methods. These inquire about the state of the server or make

modifications to that state.

■ isListening: determines if the server is listening for new clients.

■ getNumberOfClients: returns a count of the number of currently connected

clients.

■ getClientConnections: returns an array of instances of ConnectionToClient (the

array is declared as an array of Thread, but ConnectionToClient is a subclass of

Thread, so that you can cast the elements of the array to ConnectionToClient). You

can use this method to write services that do something with all clients, such as

searching for clients that have a particular property. This is one of the most

important service methods available to the developer of concrete subclasses.

■ getPort: finds out what port the server is listening on.

■ setPort: instructs the server to listen on the specified port next time listen is

called; it does not change the port on which the server is currently listening.

■ setBacklog: sets the size of the queue length. If a client attempts to connect

when this queue is full, the connection is refused. The queue can get full if large

numbers of clients try to connect, and the server cannot accept them fast

enough.

The callback methods of AbstractServer
These five methods are all called when important events occur.

Methods that may be overridden by subclasses. These may be overridden by

subclasses and are called when events occur that may be interesting to concrete

subclasses:

■ serverStarted: called whenever the server starts accepting connections.

■ clientConnected: called whenever a new client connects; it provides the

instance of ConnectionToClient (described below) as an argument.

 Lethbridge.book Page 96 Tuesday, November 16, 2004 12:22 PM

Section 3.8 97Basic description of OCSF – server side

■ clientDisconnected: called whenever the server disconnects a client using a call

to the close method of ConnectionToClient. It provides the instance of

ConnectionToClient as an argument.

■ clientException: called whenever a client disconnects itself, or is disconnected

as a result of a network failure.

■ serverStopped: called whenever the server stops accepting connections as a

result of a call to stopListening.

■ listeningException: called whenever the server stops accepting connections

due to some failure.

■ serverClosed: called when the server closes down.

In the same way that the client had only one abstract method, the server has only

one abstract method called handleMessageFromClient. This single slot method is

the most important piece of code that a developer of a concrete subclass will

write. When called by the framework, it provides as arguments the message

received as well as the instance of ConnectionToClient corresponding to the client

that sent the message.

The public interface of ConnectionToClient
For the period of time during which each client is connected, an instance of

ConnectionToClient exists for that client. The currently existing instances of this

class can be accessed using getClientConnections, as described above, as well as

several of AbstractServer’s callback methods. You use such objects to find out

information about clients and to communicate with clients.

ConnectionToClient is a concrete class. Users of the framework can simply use

its facilities – they do not have to subclass it. It provides five service methods that

can be used by developers of concrete subclasses of AbstractServer. The first two

of these can throw an IOException.

■ sendToClient: the central method that is used to communicate with the client.

■ close: causes the client to be disconnected.

■ getInetAddress: obtains the Internet address of the client connection.

■ setInfo: allows arbitrary information to be saved about this client. For

example, the concrete server could give certain clients special privileges, which

would be recorded using this method. More simply, this method could be used

to record the client’s user id.

■ getInfo: allows the retrieval of any information that had been saved using

setInfo.

 Lethbridge.book Page 97 Tuesday, November 16, 2004 12:22 PM

98 Chapter 3
Basing software development on reusable technology

How an application developer should use AbstractServer and ConnectionToClient
A developer who wants to create a server using OCSF needs to perform the

following activities, which are almost identical to what a developer of a client

needs to do:

■ Create a subclass of AbstractServer.

■ In this subclass, implement the slot method handleMessageFromClient to do

something useful with any messages coming from the client.

■ Arrange for some code somewhere to create an instance of the new subclass of

AbstractServer and to call the listen method.

In almost all servers, the developer will also want to do the following:

■ Arrange for code somewhere to send messages to clients, using the

getClientConnections and sendToClient service methods. For a simple server, it

might be possible to use sendToAllClients instead.

■ Implement one or more of the other callback methods to respond in intelligent

ways to various events.

A few details of the private internals of AbstractServer and ConnectionToClient
You can design a server knowing only the above information; however, the

following are a few of the internal details of the server side of OCSF. These

details will help you form a better understanding of how it works.

■ The setInfo and getInfo methods make use of a Java class called HashMap. A

HashMap can store an arbitrary object using some other arbitrary object as a key.

The key can then be later used to retrieve the stored object.

■ Many of the methods in the server side of OCSF are synchronized.

Synchronizing a method ensures that no other thread can access the object

while it is running. Since there are many ConnectionToClient threads that could

all make concurrent changes to the data maintained by the server,

synchronization guarantees that critical operations are performed one at a

time, ensuring the integrity of the data.

■ The collection of instances of ConnectionToClient maintained by AbstractServer
is stored using a special Java class called ThreadGroup. This class takes care of

automatically removing elements when a thread terminates.

■ The server must regularly take a temporary pause from listening to see if the

stopListening method has been called; if not, then it resumes listening

immediately. A design alternative would be to have the stopListening method

force the listening thread to terminate; however, that would leave the

ServerSocket in an unstable state. The method setTimeout can be used to set the

interval between server pauses; it defines the maximum time that the server

 Lethbridge.book Page 98 Tuesday, November 16, 2004 12:22 PM

Section 3.9 99An instant messaging application using the OCSF

will take to stop the listening thread. The default value of 500 ms is suitable for

most applications.

3.9 An instant messaging application using the OCSF

To illustrate the use of OCSF, we present here a simple client–server instant

messaging system. We call this SimpleChat, and its source code can be found on

the book’s web site. The version presented here is Phase 1 of SimpleChat.

Various project exercises found at the end of this and subsequent chapters ask

you to add features to SimpleChat.

The server side of SimpleChat is particularly simple. All the server does is

echo messages coming from clients to all the connected clients; thus the class is

called EchoServer. EchoServer itself has no user interface; once started its process

must be killed or it will run indefinitely.

As Figure 3.8 shows, EchoServer is simply a subclass of AbstractServer. The main
method creates a new instance and starts listening for server connections by

calling listen. To provide feedback, all the callback methods simply print out

messages to the user’s console. The main methods are underlined since they are

static.

The handleMessageFromClient method does one more thing: it calls

sendToAllClients in order to echo any messages. The following is the code for

handleMessageFromClient.

public void handleMessageFromClient (
 Object msg, ConnectionToClient client)
{
 System.out.println
 ("Message received: " + msg + " from " + client);
 this.sendToAllClients(msg);
}

On the client side, ChatClient is a subclass of AbstractClient that overrides one

method, handleMessageFromServer. This method does nothing but arrange for

Figure 3.8 Extending the OCSF framework to build the SimpleChat application

AbstractClient

ClientConsole

accept()
display()
main()

«interface»
ChatIF

display()

AbstractServer
1

1

clientUI

client

ChatClient

handleMessageFromServer()
handleMessageFromClientUI()
quit()

EchoServer

handleMessageFromClient()
serverStarted()
serverStopped()
main()

 Lethbridge.book Page 99 Tuesday, November 16, 2004 12:22 PM

100 Chapter 3
Basing software development on reusable technology

messages to be displayed to the end-user, as discussed below. ChatClient also has

two other methods that are called by the user interface.

The user interface of the client is carefully separated from the functional part

of the client. A Java interface, ChatIF, is provided that specifies that any user

interface must implement a single method, display. One class called

ClientConsole implements this interface; some other class could be substituted in

place of ClientConsole. For example, on the book’s web site you will find a class

called ClientGUI. This substitute class simply has to implement the display
operation to work properly with ChatClient.

When the client starts, the main method in ClientConsole runs. This creates

instances of ClientConsole and ChatClient (which runs as a second thread), and

then calls a method called accept to await user input. The accept method runs in

a loop until the program is terminated; it sends all input to the instance of

ChatClient by calling its handleMessageFromClientUI. This in turn calls sendToServer.
The code for handleMessageFromClientUI is written as follows:

public void handleMessageFromClientUI(String message)

{
 try
 {
 sendToServer(message);
 }
 catch(IOException e)
 {
 clientUI.display
 ("Could not send message to server. Terminating client.");
 quit();
 }

}

Communication coming from the server works as follows. The framework

triggers a call to handleMessageFromServer. This in turn calls the display operation

of ChatIF, which results in a call to the display method in the user interface class

ClientConsole. The code for handleMessageFromServer is as follows.

public void handleMessageFromServer(Object msg)

{

 clientUI.display(msg.toString());

}

In the exercises at the end of the chapter, you will make some changes to Phase

1 of SimpleChat. In subsequent chapters, you will have the chance to make many

other improvements and additions to its design. If you follow all the exercises,

you will end up being able to transmit drawings in real time with the program.

 Lethbridge.book Page 100 Tuesday, November 16, 2004 12:22 PM

Section 3.10 101Difficulties and risks when considering reusable technology and client–server systems

3.10 Difficulties and risks when considering reusable technology and client–server systems

Software development organizations should design software that is reusable,

and should reuse software whenever possible. In both cases, the goal is to reduce

the large cost associated with developing the same thing over and over again.

One important approach is to actively look for opportunities in any

development project to design a framework instead of designing an entire

application.

Unfortunately, there are some important risks involved in both reuse and

reusability. Software engineers should always consider these issues as part of the

risk management process we discussed in Chapter 1.

Risks when reusing technology
■ Poor quality reusable components. You have to trust that the technology

works properly, and that any problems will be fixed. Unfortunately, the

designer of the reusable software might not have followed good software

engineering practices, and you may discover major problems. The designer

may not have the time to fix the technology, or the technology may be so poor

that fixing it adds new problems.

Resolution. Ensure the developers of the reusable technology follow good software

engineering practices and are willing to provide active support.

■ Compatibility or availability not maintained. Later versions of the

technology might be changed in ways that are incompatible with how you have

used it. Alternatively, the producer of the technology might go out of business

or withdraw it from the market. You may therefore be forced to abandon the

technology or modify your applications to stay compatible.

Resolution. Avoid the use of obscure features of technology. Only reuse technology

that others are also reusing. Mandate that reuse should be the rule, but allow

exceptions in cases where developers can provide a clear justification.

Risks when developing reusable technology
■ Risk from an uncertain investment. Developing reusable technology takes

time away from developing applications and is therefore a calculated risk.

Resolution. To ensure the investment pays off, carefully plan the development of

the reusable technology, in the same manner as if it were a product for a client.

Monitor the success or failure of the reusable software so that you can improve

your investment decisions in future projects.

■ The so-called ‘not invented here syndrome’. A framework developed by one

set of developers might not be used because others fear it might not be

supported.

Resolution. Build confidence in the reusable technology by guaranteeing support,

 Lethbridge.book Page 101 Tuesday, November 16, 2004 12:22 PM

102 Chapter 3
Basing software development on reusable technology

ensuring it is of high quality and responding to the needs of the users. (The users

in this case are the software engineers who adopt the technology.)

■ Competition. Reusable technology might not end up being used if somebody

else develops competing technology that gains wide acceptance. Being beaten

by the competition is a risk in any business; however, with reusable software the

competitive forces are often not financial in nature. Several groups may

develop similar packages and one may be accepted for reuse merely because its

developers are better known or ‘market’ it better.

Resolution. Ensure the reusable technology is as useful and as high quality as

possible. Advertise the presence and advantages of your reusable software.

■ Divergence. Several development teams using the same framework may want

to change it in different ways.

Resolution. Ensure that the framework is well tested and reviewed; if it is designed

to be general enough, then it will be less likely to suffer from divergent changes.

Risks inherent in client–server or other distributed systems
■ Security. Distributed systems are particularly prone to security violations, due

to the fact that information is transmitted over a network. Communications

can be intercepted, or a denial-of-service attack can be implemented.

Resolution. Recognize that security is a big problem with no perfect solutions.

Incorporate encryption, firewalls and similar protective measures into your

designs.

■ Need for adaptive maintenance. If clients and servers are developed by

different organizations, then the developers of clients are frequently forced to

upgrade their clients whenever the server is changed.

Resolution. Ensure that all software is forward-compatible and backward-

compatible with other versions of clients and servers. Achieving this requires

designing the client–server protocols to be very general and flexible.

3.11 Summary

In this chapter we have studied reusable technology, which should be the basis

for most software development projects. When developing software, you can

reuse many kinds of things, ranging from the expertise of people who have

worked on past projects up to complete applications. You should also strive to

make anything you develop as reusable as possible.

An important type of reuse is reuse of frameworks. Frameworks are software

systems that are not immediately usable, but can be quickly extended to build an

application or part of an application, by providing essential details that are

missing.

We studied in depth a client–server framework written in Java. The Object

Client–Server Framework (OCSF) provides all the essential features of any

 Lethbridge.book Page 102 Tuesday, November 16, 2004 12:22 PM

Section 3.12 103For more information

client–server system. On the server side it includes facilities for starting and

stopping the server, maintaining a list of clients, sending messages to clients and

responding to messages received from clients. On the client side, it provides

facilities for connecting and disconnecting from a server, sending messages to

the server, and responding to messages coming from the server.

We showed how it is possible to take this framework and implement only a

few methods in order to create an instant messaging system we call SimpleChat.

3.12 For more information

Reuse
■ ReNewsWWW: http://frakes.cs.vt.edu/renews.html The Electronic Software

Reuse and Re-engineering Newsletter on the World Wide Web

■ I. Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture Process and

Organization for Business Success, Addison-Wesley, 1997

■ C. McClure, Software Reuse Techniques: Adding Reuse to the System Development

Process, Prentice-Hall, 1997

Frameworks and product lines
■ M. E. Fayad, D. C. Schmidt and R. Johnson, Implementing Application

Frameworks: Object-Oriented Frameworks at Work, Wiley, 1999

■ G. Rogers, Framework-Based Software Development in C++, Prentice Hall, 1997

■ D. F. D’Souza, A. C. Wills, Objects, Components, and Frameworks with UML:

The Catalysis(SM) Approach, Addison-Wesley, 1999

Network ethics
People who design and work with distributed systems must develop a heightened awareness of
certain ethical issues.

With distributed systems, it is particularly easy to violate people’s privacy. This can be
done by simply gathering data about people as they use network-based programs, or else by
actively intercepting communications. Both these activities should normally be considered
unethical unless people have consented to the release of their private information, are able
to withdraw that consent easily at any time, are able to examine and correct the information
collected about them, and are aware of the method by which the information is collected.

Knowledge of how to develop distributed systems also brings with it knowledge of how
to develop harmful programs such as viruses or Trojan horses, as well as how to ‘hack’ into
systems. Some people take a perverse pride in using such knowledge; however, doing so is
illegal and extremely unethical, no matter whether the knowledge is used for ‘fun’ or
maliciously.

 Lethbridge.book Page 103 Tuesday, November 16, 2004 12:22 PM

104 Chapter 3
Basing software development on reusable technology

■ The product line practice initiative: http://www.sei.cmu.edu/plp/

The Internet, networking etc.
■ The Living Internet: http://livinginternet.com. This web site gives an excellent

overview about the Internet, including a discussion of IP addresses etc.

■ M. Hughes, M. Shoffner and D. Hamner, Java Network Programming: A

Complete Guide to Networking, Streams, and Distributed Computing, 2nd

edition, Manning Publications, 1999. http://nitric.com/jnp/

The client–server architecture
■ The Webopedia entry for this topic: http://webopedia.internet.com/TERM/c/

client_server_architecture.html

■ The client–server newsgroup news:comp.client-server. http://groups.google.com/

groups?&group=comp.client-server

Project exercises

The following series of exercises should ideally be followed in sequence. After

completion of these exercises you will have built Phase 2 of SimpleChat. A

complete implementation of Phase 2 is available on the book’s web site.

E48 On the book’s web site, you will find a set of ‘test cases’ for Phase 1 of the

SimpleChat program. We will discuss test cases in much more detail in Chapter

10. For now, you can simply see them as a set of instructions that allow you to

verify the functionality of the system. You can also use them to learn about the

system. Pick ten Phase 1 test cases and execute them.

E49 This exercise will help you to become familiar with the internals of OCSF and

Phase 1 of an instant messaging application we call SimpleChat. Modify the

application to provide the following features (Remember: do not modify the

OCSF framework):

Client side:

(a) Currently, if the server shuts down while a client is connected, the client does

not respond, and continues to wait for messages. Modify the client so that it

responds to the shutdown of the server by printing a message saying the

server has shut down, and quitting. Design hint: look at the methods called

connectionClosed and connectionException.

(b) The client currently always uses a default port. Modify the client so that it

obtains the port number from the command line. Design hint: look at the

way it obtains the host name from the command line.

 Lethbridge.book Page 104 Tuesday, November 16, 2004 12:22 PM

246 Chapter 6
Using design patterns

(a) Create a design pattern that describes this idea. Use the format presented in

this chapter.

(b) Scan the literature on design patterns and look for the Cache Management

design pattern. Compare it with the solution you proposed.

6.14 Enhancing OCSF to employ additional design patterns

The Object Client–Server Framework (OCSF) presented in Chapter 3 provides

a simple way to set up a client–server application rapidly. In this section, we

introduce additional features of OCSF and show how the use of design patterns

can greatly increase flexibility. As with the basic classes of OCSF, code for the

extensions discussed here is available on the book’s web site (http://

www.lloseng.com).

Client connection factory
The first extension to the basic framework is the addition of a Factory to handle

client connections. To understand the usefulness of this mechanism, let us first

review client connection management on the server side. Each time a new client

connects to the server, a ConnectionToClient object is created. This object defines

a thread that manages all communication with that particular client. All

messages received from the client are passed on to the handleMessageFromClient
method in a subclass of AbstractServer. This method is synchronized so that if

two ConnectionToClient threads need to access the same resource (e.g. an instance

variable of the server) then they won’t interfere with each other – only one call

to handleMessageFromClient will execute at a time.

However, there are some circumstances when you might want to allow

developers to create application-specific subclasses of ConnectionToClient:

■ You might not like having all message handling processed sequentially in the

synchronized handleMessageFromClient in the server object. Instead you might

want to have client message handling take place in a version of

handleMessageFromClient in a special subclass of ConnectionToClient. This could

still be synchronized if you like, but it would be synchronized on the

ConnectionToClient object in order that the processing of messages from

different clients could be done concurrently.

■ You might want to have different handleMessageFromClient methods in different

subclasses of ConnectionToClient. A different subclass of ConnectionToClient
could, for example, be created to handle clients in your local area network, as

opposed to clients somewhere else on the Internet.

To enable the server class to instantiate an application-specific subclass of

ConnectionToClient, OCSF provides an optional Factory mechanism. There are two

keys to this. The first key is an interface called AbstractConnectionFactory (see Figure

6.15). You create an application-specific factory class that implements the

 Lethbridge.book Page 246 Tuesday, November 16, 2004 12:22 PM

Section 6.14 247Enhancing OCSF to employ additional design patterns

createConnection method in this interface. Your factory class will in turn create

instances of your own subclass of ConnectionToClient. The second key is the method

setConnectionFactory found in AbstractServer. Your server class calls this to ensure

that whenever a new client attempts to connect, your factory will be directed to

instantiate your subclass of ConnectionToClient to handle the connection.

To use the OCSF factory mechanism, you therefore need to do the following:

1. Create your subclass of ConnectionToClient. Its constructor must have the same

signature as ConnectionToClient, and it must call the constructor of

ConnnectionToClient using the super keyword. Your class will also normally want

to override handleMessageFromClient; if this method returns true, the version of

handleMessageFromClient in your server class will also be subsequently called.

2. Create your factory class that simply defines a method for the createConnection
operation of the AbstractConnectionFactory interface. Typically, the method

would look like this:

protected ConnectionToClient createConnection(
 ThreadGroup group, Socket clientSocket,
 AbstractServer server) throws IOException
{
 return new Connection(group,clientSocket,server);
}

3. Arrange for the server make the following call before it starts listening:

setConnectionFactory(new MyConnectionFactory());

Observable layer
A second extension to the OCSF framework is the addition of an Observable

layer. We will describe the client side, but the server side works the same way.

In the basic OCSF, a message received by a client is processed by the subclass of

AbstractClient that implements the handleMessageFromServer abstract method.

Each time a new application is developed, therefore, the AbstractClient class

must be subclassed.

The Observer pattern provides an alternative mechanism for developing a

client. Any number of «Observer» classes can ask to be notified when something

‘interesting’ happens to the client – the arrival of a message or the closing of a

connection, for example. We would therefore like to have a subclass of

AbstractClient that is an «Observable». Unfortunately, since Java does not

permit multiple inheritance, we cannot make it a subclass of the Observable class

itself. Instead, we use the Adapter pattern, as shown in Figure 6.15.

The extended OCSF has the class ObservableClient. This has exactly the same

interface as AbstractClient, except that it is a subclass of Observable. It is also an

adapter: it delegates methods such as sendToServer, setPort, etc. to instances of a

concrete subclass of AbstractClient called AdaptableClient. Designers using

ObservableClient never need to know that AdaptableClient exists.

 Lethbridge.book Page 247 Tuesday, November 16, 2004 12:22 PM

248 Chapter 6
Using design patterns

Implementation of the Observable layer
The following are some of the highlights of the implementation of the client

side:

■ The class AdaptableClient, as the concrete subclass of AbstractClient, provides

the required concrete implementation of handleMessageFromServer. It also

provides implementations of the hook methods connnectionClosed and

connectionEstablished. All that these three callback methods do is delegate to

the ObservableClient. Their structure is as follows:

callbackMethod()
{
 observable.callbackMethod();
}

■ There is always a one-to-one relationship between an AdaptableClient and an

ObservableClient. Instances of both these classes must exist.

Figure 6.15 The Object Client–Server Framework with extensions to employ the Observable

and Factory design patterns

ConnectionToClient

AbstractServerAbstractClient

Observable

AdaptableClient

connectionEstablished()
connectionClosed()
handleMessageFromServer()

AdaptableServer

clientConnected()
clientDisconnected()
serverStarted()
serverStopped()
handleMessageFromClient()

ObservableServer

listen()
stopListening()
close()
sendToAllClients()
isListening()
getClientConnections()
getNumberOfClients()
getPort()
setPort()
clientConnnected()
clientDisconnected()
serverStarted()
serverStopped()
handleMessageFromClient()

ObservableClient

openConnection()
closeConnection()
sendToServer()
isConnected()
getPort()
setPort()
getHost()
setHost()
getInetAddress()
handleMessageFromServer()
connectionClosed()
connectionEstablished()

∗1

1

1 1
1

AbstractConnectionFactory

0..1

«interface»

createConnection()

 Lethbridge.book Page 248 Tuesday, November 16, 2004 12:22 PM

Section 6.14 249Enhancing OCSF to employ additional design patterns

■ All the service methods in ObservableClient (such as openConnection) simply

delegate to the AdaptableClient. They have the following structure:

serviceMethod()
{
 return adaptable.serviceMethod();
}

■ The method handleMessageFromServer in ObservableClient is implemented as

follows:

public void handleMessageFromServer(Object message)
{
 setChanged();
 notifyObservers(message);
}

■ The other callback methods in ObservableClient, such as the hook method

connectionClosed, do nothing. A designer could elect to create a subclass of

ObservableClient which might implement connectionClosed like this:

public void connectionClosed()
{
 setChanged();
 notifyObservers("connectionClosed");
}

The server side is implemented analogously, except that the instance of

ConnectionToClient could also be sent to the observers.

Some important advantages of using the Observable layer of OCSF are:

1. Different types of messages can be processed by different classes of observer.

For example, different parts of a user interface might update themselves when

specific messages are received; they would ignore the other messages.

2. Programmers using the ObservableClient or ObservableServer need to know very

little about these classes. There is thus a better separation of concerns between

the communication subsystem (OCSF) and different application subsystems.

Exercise

E131 In the Observable layer of OCSF, the classes ObservableClient and

ObservableServer are similar to adapters in the sense that their main function is

to delegate to the adaptable classes. In what way do they differ from true

adapters? You can look at the design presented above to answer this, but it may

also help if you study the source code.

 Lethbridge.book Page 249 Tuesday, November 16, 2004 12:22 PM

250 Chapter 6
Using design patterns

Using the Observable layer
In order to connect a class to the observable layer of OCSF, the procedure is as

follows:

1. Create the application class that implements the Observer interface (note that

this is not a subclass of any of the framework classes).

2. Register an instance of the new class as an observer of the ObservableClient (or

ObservableServer). Typically, you would do this in the constructor, in the

following manner:

public MessageHandler(Observable client)
{
 client.addObserver(this);
 ...
}

3. Define the update method in the new class. Normally a given class will react

only to messages of a particular type. In the following example, our application

class is only interested in messages that are of class SomeClass.

public void update(Observable obs, Object message)
{
 if (message instanceOf SomeClass)
 {
 // process the message
 }
}

If message is a String, a condition in the if block could be added to determine

what to do with the message.

6.15 Difficulties and risks when using design patterns

The following are the key difficulties to anticipate when designing and using

design patterns:

■ Patterns are not a panacea. Whenever you see an indication that a pattern

should be applied, you might be tempted to apply the pattern blindly. However,

this can lead to unwise design decisions. For example, you do not always need

to apply the Façade pattern in every subsystem; adding the extra class might

make the overall design more complex, especially if instances of many of the

classes in the subsystem are passed as data to methods outside the subsystem.

Resolution. Always understand in depth the forces that need to be balanced, and

when other patterns better balance the forces. Also, make sure you justify each

design decision carefully.

■ Developing patterns is hard. Writing a good pattern takes considerable work.

A poor pattern can be hard for other people to apply correctly, and can lead

 Lethbridge.book Page 250 Tuesday, November 16, 2004 12:22 PM

Section 6.17 251For more information

them to make incorrect decisions. It is particularly hard to write a set of forces

effectively.

Resolution. Do not write patterns for others to use until you have considerable

experience both in software design and in the use of patterns. Take an in-depth

course on patterns. Iteratively refine your patterns, and have them peer reviewed

at each iteration.

6.16 Summary

Applying patterns to the process of creating class diagrams helps you to create

better models. Patterns help you to avoid common mistakes and to create

systems that are simpler and more flexible.

Some of the more important patterns that occur in domain models include

Abstraction–Occurrence, General Hierarchy and Player–Role. Observer,

Adapter and Factory are patterns that frequently occur in complete system class

diagrams. Immutable, Façade and Proxy are typically applied when the modeler

is moving towards a more detailed stage of design.

The patterns can also be categorized according to the principles they embody.

The Delegation pattern is a fundamental pattern that prevents excessive

interconnection among different parts of a system. Abstraction–Occurrence,

Observer and Player–Role also help increase separation of concerns. Adapter,

Façade and Proxy help the developer to reuse the facilities of other classes.

Immutable and Read-Only Interface help protect objects from unexpected

changes.

6.17 For more information

The following are some of the many available resources about patterns:

■ The Patterns Home Page: http://www.hillside.net/patterns/ – an extensive list

of resources about patterns

■ A reference source for design patterns in Java: http://www.fluffycat.com/java/

patterns.html

■ Brad Appleton’s description of patterns: http://www.cmcrossroads.com/

bradapp/docs/patterns-intro.html

■ E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, October 1994. This book

is the most widely cited book about patterns. Its authors are often referred to as

the ‘Gang of Four’

■ C. Alexander, A Pattern Language, Oxford University Press, 1977. The classic

book by the originator of the patterns movement

 Lethbridge.book Page 251 Tuesday, November 16, 2004 12:22 PM

