

Commonly Used Interfaces

Comparable<E>

compareTo defines an ordering of values:

 < 0 if a is "before" b

a.compareTo(b) = 0 if a and b have the

 same lexical order

 > 0 if a is "after" b

String implements Comparable:

"dog".compareTo("cat") returns +1

"Dog".compareTo("cat") returns -31 (case sensitive!)

interface Comparable<T> {
 public int compareTo(T other);
}

Sorting and Comparison

Arrays.sort() and Collections.sort(list) use this to sort any
kind of objects that implement Comparable.

String[] fruit = {"Orange", "Apple", "grapes",

 "banana", "Durian"};

Arrays.sort(fruit);

> fruit

["Apple", "Durian", "Orange", "banana", "grapes"]

Note that compareTo is case sensitive.

The fruit are not in dictionary order!

Custom Comparison & Sorting

What if a class does not have compareTo or it does not
do what we want?

Example: we want to sort fruit in dictionary order
(ignoring case):

String[] fruit = {"Orange", "Apple", "grapes",

 "grapes", "banana", "Durian"};

Arrays.sort(fruit);

["Apple", "Durian", "Orange", "banana", "grapes"]

Comparator

Is there another interface we can use?

java.util.Comparator

interface Comparator<E> {

 /**

 * Compare 2 objects a and b.

 */

 int compare(E a, E b);

}

Write a Comparator for string

We can write a comparator for case insensitive ordering
of Strings, and use it to sort the array:

class DictComp implements Comparable<String> {

 // case insensitive comparison

 public int compare(String a, String b) {

 return a.compareToIgnoreCase(b);

 }

}

Comparator<String> comp = new DictComp();

Arrays.sort(fruit, comp);

> fruit

["Apple", "banana", "Durian", "grapes", "Orange"]

Run Something?

Interface for anything with a run() method?

Runnable

Iterate over a collection

Iterator interface defines two methods:

hasNext() - true if the next() method can return another
element

next() - return next element from the underlying source

List<String> fruit = Arrays.asList("Orange",

 "Apple", "grapes", "banana");

Iterator<String> iter = fruit.iterator();

while(iter.hasNext()) {

 System.out.println(iter.next());

}

Scanner is an Iterator

Scanner implements Iterator<String>

We can use "while" loop as previous slide to iterate over
the words in a String using Scanner:

Scanner scan = new Scanner(

 "Orange Apple grapes banana");

while(scan.hasNext()) {

 System.out.println(scan.next());

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

