

Designing with Interfaces

OO A&D Principle

meaning:

"Program to the specification (of an object's behavior),
don't depend on its implementation (which may change)".

"Program to an interface, not an implementation"

Designing with Interfaces (1)

1. Use interfaces to "protect" one class from another
class whose implementation may change.

2. Reduces coupling between classes.

3. Define what behavior a class must provide.

BankAccount

- balance: Money

+ deposit(Money)

+ withdraw(Money)

Money

- currency = "Baht"

- value: BigDecimal

+ getValue()

+ getCurrency()

+ add(m: Money)

contains

Designing with Interfaces (2)

4. Create an interface for the required behavior.

5. Clients use the Interface type, not the actual type.

6. Providers implement the interface.

BankAccount

- balance: Money

ThaiMoney

<<interface>>
Money

+ getValue()
+ getCurrency()
+ add(Money)

Designing with Interfaces

 Interface can be used to define required behavior of a
client.

<<interface>>

Comparable

+compareTo()

Student

+compareTo()

...

Arrays

+sort(Comparable [] x)

...

Arrays.sort(students) // array of Student objects

s1.compareTo(s2)

Application Utility Class

Arrays.sort() can sort

any array of objects that

implements Comparable

Iterator Interface

Pattern: we want to visit every member of a collection, and
we want this to work for any kind of collection.

Solution: design an interface for the behavior we want.
Require that all collections implement this interface.

MyApplication

+process(Iterator)

<<interface>>
Iterator

+hasNext(): bool

+next(): Object

ArrayList

Interface for the Observer Pattern

Pattern: one object is the source if "interesting" events.
Other objects want to be notified when an interesting
event occurs.

Solution: objects register themselves as Observers.
Then the "interesting" event occurs, the source calls the
Observers' update() method.

MyObserver

+update(Object src,
Object info)

App

+addObserver(obj)

+deleteObserver(obj)

MyObserver[]: who;

Observers Source
addObserver

update

Interface for Observer Pattern

 The Java Observer interface specifies client behavior

 Observable abstract class provides the server side.

<<interface>>

Observer

+update(...)

AnyClient

+update(...)

...

Observable

+addObserver(Observer)

+deleteObserver(Observer)

+notifyObservers(...)

+countObservers(...)

addObserver(this)

Client Interesting Source

MyApplication

extends

Interface for View-Controller Pattern

 Interfaces are used to separate an application's "user
interface" from the "logic engine" of the application.

 Interface reduces dependency between classes.

<<interface>>

ClientUI

+display()
+getReply(question)

GUIclient

+display()
+getReply(question)

...

App

+run(obj)

ClientUI: obj;

App.run(this)

User Interface Controller

s = obj.getReply("Enter amount:")

Interfaces You Should Know

Interface What it specifies

Runnable run() method

 Comparable<T> compareTo(T other)

Comparator<T> compare(T x, T y)

Iterator<T> hasNext() and next()

iterating over collections

Iterable<T> iterator() - create an Iterator

a way of creating iterators

Cloneable safe to call clone()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

