

Interfaces

James Brucker

What is an Interface?

An interface is a specification of

(1) a required behavior
 any class that claims to "implement" the interface

must perform the behavior

(2) constant data values

Example: USB is a specification for an interface.

 precise size of the connector

 electrical: voltage, min/max current, which side provides power

 communications: signaling, protocol, device ID

Any device that means the spec can communicate with other
devices -- doesn't matter who manufactured it

Why Use Interfaces?
Separate specification of a behavior from it

implementation

 Many classes can implement the same behavior

 Each class can implement the behavior in its own way

Benefits

 The invoker of the behavior is not coupled to a class that
implements the behavior.

 Enables polymorphism and code re-use

Example:

every class can provide its own toString() method. We can
print any object without knowing (or being coupled) to its
class

Writing an Interface

An interface (before Java 8) may contain only:
 abstract public methods
 public static final variables (constants).

Example:

public interface Valuable {

 public static final String CURRENCY = "Baht";

 /** Get the value of this object. */

 public abstract double getValue();

}

abstract method has no method body

You can omit defaults

In an Interface, it is implied that:
 all methods are "public abstract"
 all variables are "public static final".

so you don't have to write these. Example:

public interface Valuable {

 String CURRENCY = "Baht";

 /** Get the value of this object. */

 double getValue();

}

automatically "public abstract"

Implementing an Interface

A class that implements an interface must implement all
the methods in the interface.

It may use any static constants in the interface.
public class Money implements Valuable {

 private double value;

 /** Get the value of this object. */

 public double getValue() {

 return value;

 }

 public String toString() {

 return Double.toString(value)+" "+CURRENCY;

 }

}

What an Interface Can/Cannot do

Interfaces can contain:

1. public static final values (constants).

2. public instance method signatures (but no code).

3. "default" implementations of methods (Java 8+).

Interface Cannot contain:

 static methods (prior to Java 8)

 non-final or non-static variables

 constructors

Limits on use of Interface

What you can do:

1. declare a class "implements" an interface

2. "implement" more than one interface:

class MyClass implements Runnable, Comparable, Cloneable

3. You can define variables using interface type, and even
create an array or ArrayList using an interface as type:

// Iterator is an interface with type parameter

Iterator<String> it = wordlist.iterator();

Valuable m = new Money(5, "Baht");

List<Valuable> mlist = new ArrayList<Valuable>();

Runnable[] tasks = new Runnable[5];

Interface Cannot ...

You cannot:

 create objects of an interface type.

 access static behavior using an interface type.

Comparable cmp = new Comparable(); // ERROR

Valuable m = new Valuable(); // ERROR

Practical Example: sorting

Many applications need to sort an array of objects.

What we want
 one sort method that can sort (almost) anything.

Question:

what does the sort method needs to know about the
objects?

Answer:

 needs a way to compare two objects to decide which
one comes first, ex: is "apple" before "orange" ?

The Comparable Interface

Comparable means two object can be ordered

compareTo() returns the result of comparison:

a.compareTo(b) < 0 a should come before b

a.compareTo(b) > 0 a should come after b

a.compareTo(b) = 0 a and b have same order
 in a sequence

package java.lang;

interface Comparable {

int compareTo(Object obj) ;

}

the required behavior

Arrays.sort() for sorting

Arrays is a class in java.util.

It has a static sort method for arrays:

String [] fruit = { "orange", "grapes", "apple",
 "durian", "banana" };
Arrays.sort(fruit);

// now print the fruit using "for-each" loop
for(String s : fruit) System.out.println(s);
apple
banana
durian
grapes
orange

Arrays.sort() uses Comparable

static void Arrays.sort(Object[] a)

sorts any kind of object provides the Objects implement
Comparable

It should be : Arrays.sort(Comparable[] a)

Comparable enables Code Reuse!

Arrays.sort() depends only on the "compareTo"
behavior, not on any particular class. It can sort anything.

implements

<<interface>>

Comparable

+compareTo(o: Object) : int

Student

 ...

+compareTo(o: Object) : int

compares
objects usingjava.util.Arrays

+sort(Comparable[] obj)

// Sort the students in 219113
Student[] students =
 Registrar.getStudents("219113");
Arrays.sort(students);

Implement the Interface

public class Student implements Comparable {
private String firstName;
private String lastName;
private long id;

public int compareTo(Object obj) {
 if (other == null) return -1;
 /* cast object as a Student */
 Student other = (Student) obj;
 // Compare using Student id
 if (this.id < other.id) return -1;
 if (this.id > other.id) return +1;
 else return 0;
}

How does Comparable enable Code Reuse?

Sorting:
 Any application can use Arrays.sort to sort an array.

 Any application can use Collections.sort to sort a list.

Searching:

 Arrays.binarySearch(array[], key) efficient binary
search of an array that has been sorted.

 Collections.binarySearch(collection, key) efficient
search of a collection that has been sorted.

UML Notation for Interface

Student implements Comparable

implements
You don't need to write
"implements" on your
diagrams,

But you MUST use a
dashed arrow and triangle
arrowhead as shown here.

write <<interface>> above the name<<interface>>

Comparable

+compareTo(o: Object) : int

Student

 ...

+compareTo(o: Object) : int

Problem with Comparable

A problem of Comparable is that it accepts any Object .
 student.compareTo(dog)
 bankAccount.compareTo(string)

So, you have to do a lot of type checking:

public int compareTo(Object other) {

 if (!(other instanceOf Student))

 throw new IllegalArgumentException(". . .");

 Student st = (Student) other;

 // now compare using Student st

}

Parameterized Interfaces

In Java 5.0+ interfaces and classes can have type parameters.

Type parameter is a variable that represent a type: the name
of a class or interface.

Example: the Comparable interface has a type parameter (T)
that is a "place holder" for an actual data type.

interface Comparable<T> {

int compareTo(T obj) ;

}

The parameter to compareTo must be this type or a
subclass of this type.

TYPE SAFETY

Using a Parameterized Interface

public class Student implements Comparable<Student> {
private String firstName;
private String lastName;
private long id;

public int compareTo(Student other) {
 /* NO cast or type-check needed */
 //Student other = (Student) obj;
 if (other == null) return -1;
 // easy way to compare 2 "long" values

 return Long.compare(this.id, other.id);
}

Use the type parameter to implement Comparable.

Here you set the value of
the type parameter.

Type Safety

Student joe = new Student("Joe",48541111);
Dog ma = new Dog("Lassie");

// compare student to a dog?

if (joe.compareTo(ma) > 0)
System.out.println("Dog before student");

Use a type parameter so the compiler can check that
you are using compatible data types.

This is called type safety.

Java compiler will
issue an error.

UML for Parameterized Interface

Student implements Comparable<Student>

T::Student

"T::Student" means that the value of
T is Student in this implementation.

T is the type parameter, when a
class implements the interface, a
value is substituted for this

<<interface>>

Comparable

+compareTo(o: T) : int

Student

 ...

+compareTo(o: Student) : int

T

compareTo parameter is now type
T, so you can't compare Student
and Integer anymore.

Three Uses of Interfaces

1. Specify a behavior (the most common use).

2. Define constants.

3. Confirm a behavior or suitability for purpose.

Use of Interface: define constants

interface SwingConstants {
int CENTER = 0;
int TOP = 1;
int LEFT = 2;
int BOTTOM = 3
int RIGHT = 4;
...etc...

 Interface can define public constants.

Example: javax.swing.SwingConstants

Fields in an interface are implicitly:

public static final

Accessing constants from Interface

class MyClass {
int x = SwingConstants.BOTTOM;
int y = SwingConstants.LEFT;

class JLabel extends JComponent
 implements SwingConstants {

int x = BOTTOM;
int y = LEFT;

Many Swing components implement SwingConstants
so that they have all the SwingConstants.

Use of Interface: confirm behavior

public class Employee implements Cloneable {
 public Object clone() {
try {
 // first clone our parent object.
 Employee copy = (Employee) super.clone();
 // now clone our attributes
 copy.firstName = new String(firstName);
 copy.birthday = (Date) birthday.clone();
 ...etc...
 return copy;
 } catch (CloneNotSupportedException e) {
 return null;
 }
 }

The "Cloneable" interface confirms that an object
supports the "clone" behavior (deep copy).

clone() and Cloneable

If you call clone() with an object that does not
implement the Clonable interface, Object.clone() will
throw a CloneNotSupportedException .

public class Object {
...
protected Object clone() {
 if (! (this instanceof Clonable))
 throw new CloneNotSupportedException();

Test for "implements" interface

Object x;

if (x instanceof Date)

// x is a Date or a subclass of Date

if (x instanceof Comparable)

// x is Comparable

Java 8 Interfaces

Java 8 interfaces can contain code

1. default methods (instance methods)

2. static methods
Ref: http://java.dzone.com/articles/interface-default-methods-java

public interface Valuable {
 /** Abstract method that must be implemented
 * by a class.
 */
 public double getValue();

 /** default method is supplied by interface.
 */
 default boolean isWorthless() {
 return this.getValue() == 0.0;
 }
}

Interface and Inheritance

The List interface has 25
methods. Its a lot of work to

implement all of them.

<<interface>>

List

add(k: int, Object)

get(k: int)

remove(k: int)

indexOf(Object)

AbstractList implements
most of the methods for you.

AbstractList

Implements most of
the methods of List.

YourList

implement add, get,
size, remove

Your List class implements
only a few methods.

Summary: interface

 Interface can contain only:
 static constants
 instance method signatures (but no code).

 Implicit properties:
 all methods are automatically public.
 all attributes are automatically public static final.

Interface May NOT Contain
 static (class) methods (allowed in Java 8)
 implementation of methods (allowed in Java 8)
 instance variables
 constructors

Use of Interface: reduce dependency

You can eliminate direct dependency between classes
by creating an interface for required behavior.

Coupon UI

- couponCalculator

+ buyDialog()

CouponCalculator

buyCoupons(amount)

refundCoupons(coupons)

+ buyCoupons(amount)
+ refundCoupons(...)

transaction

transaction
CouponUI is
coupled to
(depends on)
the calculator

Use of Interface: reduce dependency

Coupon UI

- couponCalculator

+ buyDialog()

+
setCalculator(Coupo
nCalculator)

<<interface>>
CouponCalculator

+ buyCoupons(amount)
+ refundCoupons(...)

Now CouponUI depends only
on the interface, not on the
implementation.

MyCalculator

 ...

+ buyCoupons(amount)

+ refundCoupons(...)

Example: max(object, object)

/** find the greater of two Comparable objects.
 * @param obj1, obj2 are the objects to compare.
 * @return the lexically greater object.
 */
public Comparable max(Comparable obj1, Comparable obj2)
{
if (obj2 == null) return obj1;
if (obj1 == null) return obj2;
// a.compareTo(b) > 0 means a > b
if (obj1.compareTo(obj2) >= 0) return obj1;
else return obj2;
}

Q: Can we write a method to find the max of any two
objects?

A: Yes, if objects are comparable.

max(object, object, object)

/**
 * find the greater of three objects.
 * @param obj1, obj2, obj3 are objects to compare.
 * @return the lexically greater object.
 */
public static Comparable max(Comparable obj1,

Comparable obj2, Comparable obj3)
{

}

 How would you find the max of 3 objects?

max(object, object, ...)

/** find the lexically greatest object.
 * @param arg, ... are the objects to compare.
 * @return the lexically greatest object.
 */
public Comparable max(Comparable ... arg) {
// variable parameter list is passed as an array!
if (arg.length == 0) return null;
Comparable maxobj = arg[0];
for(int k=1; k < arg.length; k++)
// a.compareTo(b) < 0 means b "greater" than a.
if (maxobj.compareTo(arg[k]) < 0) maxobj = arg[k];
return maxobj;
}

 Java 5.0 allows variable length parameter lists.
 One method can accept any number of arguments.

How You Can Use Interfaces

 Parameter type can be an interface.
 Return type can be an interface.
 The type of a variable (attrib or local) can be an interface. An

array can be a variable.
 As right side (type) of "x instancof type".

public static Comparable max(Comparable [] args)
{

Comparable theBest;
if (args == null) return null;
theBest = arg[0];
for(int k = 1; k < args.length ; k++)

... // for you to do
return theBest;

}

OO Analysis & Design Principle

// Purse specifies that the coins
// are a List (an interface type)
public class Purse {

List<Coin> coins;

"Program to an interface, not to an implementation"

(in this principle, "interface" means a specification)

Comparator

 What if you want to sort some objects, but the class does
not implement Comparable?

- or -
 Class implements Comparable, but it isn't the way we

want to order the objects.

Example:

We want to sort a list of Strings ignoring case.
String.compareTo() is case sensitive. It puts
"Zebra" before "ant".

Solution: Comparator

The sort method let you specify your own Comparator for
comparing elements:

Arrays.sort(array[], comparator)

Collections.sort(collection, comparator)

java.util.Comparator:

public interface Comparator<T> {
/**
 * Compare a and b.
 * @return < 0 if a comes before b,

 * > 0 if a comes after b, 0 if same.
 */

public int compare(T a, T b);
}

Example: Comparator

Sort the coins in reverse order (largest value first):

public class CoinComparator
implements Comparator<Coin> {

// @precondition a and b are not null
public int compare(Coin a, Coin b) {

return b.getValue() - a.getValue();
}

}

List<Coin> coins = ...;
// sort the coins
Comparator<Coin> sorter = new CoinComparator();
Collections.sort(coins, sorter);

More Information

 Core Java, volume 1, page 223.

 Sun Java Tutorial

Interfaces for "can do"

What it means: Interface Name

Can Run Runnable

Can Compare (two things) Comparable

Can Iterate (hasNext, next) Iterable

Can Clone (make a copy) Cloneable

Can read from Readable

Questions About Interfaces

Multiple Interfaces

Q: Can a class implement multiple interfaces? How?

A:

public class MyApplication
 implements _____?_______ {

// implement required behavior by Comparable
public int compareTo(Object other) { ... }

// implement behavior for Cloneable
public Object clone() { ... }
...

}

Multiple Interfaces

Q: Can a class implement multiple interfaces? How?

A: Yes, separate the interface names by commas.

public class MyApplication
 implements Comparable, Cloneable {

// implement required behavior by Comparable
public int compareTo(Object other) { ... }

// implement behavior for Cloneable
public Object clone() { ... }
...

}

Advantage of Interface

Q: What is the advantage of using an interface
instead of an Abstract Class to specify behavior?

abstract class AbstractComparable {
/** function specification: no implementation */
abstract public int compareTo(Object other) ;

}
Abstract method does not have a body.

public class MyClass extends AbstractComparable {
/** implement the method */
public int compareTo(Object other) {

...
 }

}

Advantage of Abstract Class

Q: What is the advantage of using an abstract class
instead of an interface?

A: An abstract class can provide
implementations for some methods.

The client inherits these methods and
overrides the ones it wants to change.

abstract class AbstractFunction {
/** function specification: no implementation */
abstract public double f(double x) ;
/** approximate the derivative of f(x) */
public double derivative(double x) {

double dx = 1.0E-12;
return (f(x+dx) - f(x-dx)) / (2*dx);

}

I thought
we were
studying

interfaces.
..

Interface versus Abstract Class (2)

Example: dumb function (no derivative).

public class SimpleApp extends AbstractFunction {
/** actual function */
public double f(double x) {return x*Math.exp(-x);}
// derivativef is inherited from AbstractFunction

}

Example: smart function (has derivative).

public class BetterApp extends AbstractFunction {
/** actual function */
public double f(double x) {return x*Math.exp(-x);}
public double derivativef(double x) {

return (1 - x) * Math.exp(-x);
}

}

Using Abstract Classes

public class Optimizer {
 /** find max of f(x) on the interval [x0, x1] */
public static double findMax(AbstractFunction fun,

 double x0, double x1) {
double f0, f1, fm, xm;
f0 = fun.f(x0);
f1 = fun.f(x1);
do { xm = 0.5*(x0 + x1); // midpoint

fm = fun.f(xm);
if (f0 > f1) { x1 = xm; f1 = fm; }
else { x0 = xm; f0 = fm; }

} while (Math.abs(x1 - x0) > tolerance);
return (f1 > f0) ? x1 : x0 ;

}
}

If we use an abstract class (AbstractFunction) to describe the
client, then in the service provider (Optimizer) write:

Interfaces in C#

Interface Example in C#

/** Person class implements IComparable **/
using namespace System;
public class Person : IComparable {
 private string lastName;
 private string firstName;
 ...
 int CompareTo(object other) {
 if (other is Person) {
 Person p = (Person) other;
 return lastName.CompareTo(p.lastName);
 }
 else throw new IllegalArgumentException(
 "CompareTo argument is not a Person");
 }
}

Why implement interface?

What is the benefit?

public class Student : Person { .
private String studentID;
...

// Student is a Person
// Student inherits CompareTo from Person

}

Arrays
+Sort(IComparable[])
+Reverse(IComparable[])
+BinarySearch(Array, Obj)

IComparable

+CompareTo(object): int

Person

Student

*

Student [] students = course.getStudents();

// sort the students
Arrays.Sort(students);

Arrays
+Sort(IComparable[])
+Reverse(IComparable[])
+BinarySearch(Array, Obj)

IComparable

+CompareTo(object): int

Person

Student

*

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

