

Lexical Ordering and Sorting

These slides refer to interfaces.

Lexical Ordering

Many kinds of objects can be ordered.

Numbers ("<" defines an ordering):

Strings (character collation defines an ordering):

Ark
act
car
cat
zebra

1
2
2.01
2,980,000

Ordering using compareTo()

 Java classes defines the lexical ordering of objects
using a method named compareTo().

 Examples: String, Date, Double, all have compareTo

String s1 = "Cat";
String s2 = "Dog";
// which comes first in dictionary: Cat or Dog?
if (s1.compareTo(s2) < 0) {

// s1 comes before s2
} else if (s1.compareTo(s2) > 0) {

// s1 comes after s2
} else {

// s1 & s2 have the same lexical order
}

Sort Data in an Array

// Sort an array of Strings
// String has a compareTo() that defines order
String[] words = {"dog","cat","ant","DOGS","BIRD"};
Arrays.sort(words);

java.util.Arrays has utility methods for arrays.

One method is: Arrays.sort(array[])

dog
cat
ant
DOGS
BIRD

words array

words[0] = "BIRD"
words[1] = "DOGS"
words[2] = "ant"
words[3] = "cat"
words[4] = "dog"

Result:

Arrays.sort()

Sort part of an Array

// sort elements 0 to count (exclusive)

int count = 5; // we have 5 words to sort
Arrays.sort(words, 0, count);

If the array is not full, you can sort just the part of the
array containing values you want.

Use:
Arrays.sort(array[], start_index, end_index)

This sorts only the elements

 words[0] words[1] ... words[count-1]

Arrays.sort() can sort almost anything

Arrays.sort() can sort any many kinds of objects:
 array of Date
 array of String
 array of BigDecimal

 How does Arrays.sort know what lexical order to use?
 It calls the objects' own compareTo() method.
 This makes Arrays.sort() reusable. The Arrays class

doesn't contain any details of how to compare different
kinds of objects.

java.lang.Comparable Interface

a.compareTo(b) < 0 "a comes before b"

a.compareTo(b) = 0 "a and b have same precedence"

a.compareTo(b) > 0 "a comes after b"

/**
 * Comparable interface defines a lexical
 * ordering for objects in a class.
 */
interface Comparable {

 public int compareTo(Object other);
}

Arrays.sort uses Comparable

 Arrays.sort doesn't know (or care) what class of object
it will sort.

 Arrays.sort only cares about the behavior of the
objects in the array:
the objects must have a compareTo() method that
defines a lexical order.

public static void Arrays.sort(Object[] array)

The parameter is declared as Object[] array,
but actually the objects must implement Comparable.
Otherwise, Arrays.sort will throw an exception.

Interface with Type Parameter

 Java has type parameters, which make it easier to write
typesafe code. In this case <T> represents a datatype:

/* Comparable interface with type parameter T.
 * This ensures that you only compare objects
 * of the same type,
 * e.g. string.compareTo(string)
 */
interface Comparable<T> {

public int compareTo(T other);
}

Generics and type parameters were introduced in Java 5.

Example using Type Parameter

"class Student implements Comparable<Student>"
means that "T" must be replaced by "Student".

public class Student
 implements Comparable<Student> {

 public int compareTo(Student other) {
 // code for ordering students
 }

Implementing Comparable

 To order Students by their ID number we can write:

class Student implements Comparable<Student> {
 private String studentId;

 // compare students by ID
 public int compareTo(Student other) {
 // this code uses the String compareTo
 return
 this.studentId.compareTo(other.studentId);
 }
}

This works because studentId is a String and String
has compareTo().

Exercise

 What if studentId is a long. How would you write
compareTo?

class Student implements Comparable<Student> {
 private long studentId;
 // compare students by ID
 public int compareTo(Student other) {
 if (other == null) -1;
 return (int)Math.signum(
 this.studentId - other.studentId);

 }
}

Implementing an Interface (C#)

 To declare that your class implements an interface,
use:

class Student : IComparable {
 private string studentId;
 public int CompareTo(object other) {
 // compare students by ID
 if (! (other is Student))

 throw new Exception("invalid argument");
 // cast as student and compare
 Student s = (Student)other;
 return
 this.studentId.compareTo(s.studentId);
 }
}

compareTo consistent with equals

compareTo() should be consistent with equals().

 if a.equals(b) is true then a.compareTo(b) == 0

However,

 a.compareTo(b) == 0 does not imply a.equals(b)
is true.

UML for Comparable

Using an external comparator

There are two problems...

1. What if a class does not have a compareTo ?

2. What if compareTo doesn't do what we want?

For example...

Sort Strings ignoring case

The String compareTo() uses Unicode collation order:

"A" < "Z" < "a" < "b" ...

so, "Bird" comes before "ant".

dog
cat
ant
DOGS
BIRD

Input array

"BIRD"
"DOGS"
"ant"
"cat"
"dog"

Result array

Arrays.sort()

How can we sort words like in the dictionary (ignore
case)?

sort using a Comparator

public static void
 Arrays.sort(T[] array, Comparator<T> c)

This sort() method uses an external Comparator object
to compare values in the array.

So, what is a Comparator?

Can you guess?

java.util.Comparator Interface

compare(a, b) < 0 "a comes before b"

compare(a, b) = 0 "a and b have same precedence"

compare(a, b) > 0 "a comes after b"

In Java 8, Comparator has many more methods, but you can
ignore them. Only compare(a,b) is required.

/**
 * A Comparator defines an ordering of
 * objects of same class (or class
 * hierarchy).
 */
interface Comparator<T> {

 public int compare(T a, T b);
}

Implementing Comparator

 Order Strings ignoring case

class CompareIgnoreCase
 implements Comparator<String> {

 public int compare(String a, String b) {
 return a.compareToIgnoreCase(b);
 //TODO check that a and b are not null.
 }

Another Example

 Order Students by ID. If the ID is same, then order by
name.

class CompareById
 implements Comparator<Student> {

 public int compare(Student a, Student b) {
 int comp =
 Long.compare(a.getId(), b.getId());
 // if ID is same then order by name
 if (comp == 0) comp =
 a.getName().compareTo(b.getName());
 return comp;
 }

Exercise: Write a Comparator

Write a Comparator that order strings by length, shortest
length first. If length is same, order alphabetically.

String[] words =
 {"ants","cat","dog","Elephant","zebra"};
Comparator<String> byLength =
 new CompareByLength();
Arrays.sort(words, byLength);

words[0] = "cat"
words[1] = "dog"
words[2] = "ants"
words[3] = "zebra"
words[4] = "Elephant"

Sorting a List

You can sort Lists the same way as arrays.

The methods are:

Collections.sort(List list) - sort a list using compareTo.

Collections.sort(List<T> list, Comparator<T> cmp)

 - sort a list using an external Comparator.

Collections is in java.util. You should study it.

Review

What are 3 methods for sorting an array?

What interfaces have you studied so far in OOP?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

