
  

Lexical Ordering and Sorting

These slides refer to interfaces.  



  

Lexical Ordering

Many kinds of objects can be ordered.

Numbers ("<" defines an ordering):

  

Strings (character collation defines an ordering):

Ark
act
car
cat
zebra

1
2
2.01
2,980,000



  

Ordering using compareTo()

 Java classes defines the lexical ordering of objects 
using a method named compareTo( ). 

 Examples: String, Date, Double, all have compareTo

String s1 = "Cat";
String s2 = "Dog";
// which comes first in dictionary: Cat or Dog?
if ( s1.compareTo( s2 ) < 0 ) {

// s1 comes before s2
} else if ( s1.compareTo( s2 ) > 0 ) {

// s1 comes after s2
} else {

// s1 & s2 have the same lexical order
}



  

Sort Data in an Array

// Sort an array of Strings
// String has a compareTo() that defines order
String[] words = {"dog","cat","ant","DOGS","BIRD"};
Arrays.sort( words );

java.util.Arrays has utility methods for arrays.

One method is:  Arrays.sort( array[ ] )

dog
cat
ant
DOGS
BIRD

words array

words[0] = "BIRD"
words[1] = "DOGS"
words[2] = "ant"
words[3] = "cat"
words[4] = "dog"

Result:

Arrays.sort( )



  

Sort part of an Array

// sort elements 0 to count (exclusive)

int count = 5;  // we have 5 words to sort
Arrays.sort( words, 0, count );

If the array is not full, you can sort just the part of the 
array containing values you want.

Use:
Arrays.sort(array[ ], start_index, end_index)

This sorts only the elements 

  words[0] words[1] ... words[count-1]



  

Arrays.sort( ) can sort almost anything

Arrays.sort() can sort any many kinds of objects:
 array of Date
 array of String
 array of BigDecimal

 How does Arrays.sort know what lexical order to use?
 It calls the objects' own compareTo( ) method.
 This makes Arrays.sort( ) reusable.  The Arrays class 

doesn't contain any details of how to compare different 
kinds of objects.



  

java.lang.Comparable Interface

a.compareTo( b ) < 0        "a comes before b"

a.compareTo( b ) = 0        "a and b have same precedence"

a.compareTo( b ) > 0        "a comes after b"

/** 
 * Comparable interface defines a lexical 
 * ordering for objects in a class.
 */
interface Comparable {

  public int compareTo( Object other );
}



  

Arrays.sort uses Comparable

 Arrays.sort doesn't know (or care) what class of object 
it will sort.

 Arrays.sort only cares about the behavior of the 
objects in the array: 
the objects must have a compareTo( ) method that 
defines a lexical order.

public static void Arrays.sort( Object[] array )

The parameter is declared as Object[] array, 
but actually the objects must implement Comparable.
Otherwise, Arrays.sort will throw an exception.



  

Interface with Type Parameter

 Java has type parameters, which make it easier to write 
typesafe code. In this case <T> represents a datatype:

/* Comparable interface with type parameter T.
 * This ensures that you only compare objects
 * of the same type,
 * e.g. string.compareTo(string) 
 */
interface Comparable<T> {

public int compareTo( T other );
}

Generics and type parameters were introduced in Java 5.



  

Example using Type Parameter

"class Student implements Comparable<Student>" 
means that "T" must be replaced by "Student".

public class Student 
         implements Comparable<Student> {

   public int compareTo( Student other ) {
       // code for ordering students
     }



  

Implementing Comparable

 To order Students by their ID number we can write:

class Student implements Comparable<Student> {
    private String studentId;

    // compare students by ID
    public int compareTo( Student other ) {
        // this code uses the String compareTo
        return 
      this.studentId.compareTo(other.studentId);
    }
}

This works because studentId is a String and String 
has compareTo().



  

Exercise

 What if studentId is a long.  How would you write 
compareTo?

class Student implements Comparable<Student> {
    private long studentId;
    // compare students by ID
    public int compareTo( Student other ) {
     if (other == null) -1;
     return (int)Math.signum(
            this.studentId - other.studentId);

    }
}



  

Implementing an Interface (C#)

 To declare that your class implements an interface, 
use:

class Student : IComparable {
   private string studentId;
   public int CompareTo( object other ) {
      // compare students by ID
      if ( ! ( other is Student ) )

 throw new Exception("invalid argument");
      // cast as student and compare
      Student s = (Student)other;
      return 
         this.studentId.compareTo(s.studentId);
   }
}



  

compareTo consistent with equals

compareTo( ) should be consistent with equals( ).

 if a.equals(b) is true then a.compareTo(b) == 0

However,

 a.compareTo(b) == 0 does not imply a.equals(b) 
is true.



  

UML for Comparable



  

Using an external comparator

There are two problems...

1. What if a class does not have a compareTo ?

2. What if compareTo doesn't do what we want?  

For example...



  

Sort Strings ignoring case

The String compareTo() uses Unicode collation order:

"A" < "Z" < "a" < "b" ...

so, "Bird" comes before "ant".

dog
cat
ant
DOGS
BIRD

Input array

"BIRD"
"DOGS"
"ant"
"cat"
"dog"

Result array

Arrays.sort( )

How can we sort words like in the dictionary (ignore 
case)?



  

sort using a Comparator

public static void 
     Arrays.sort( T[] array, Comparator<T> c )

This sort( ) method uses an external Comparator object 
to compare values in the array.

So, what is a Comparator?

Can you guess?



  

java.util.Comparator Interface

compare( a, b ) < 0        "a comes before b"

compare( a, b ) = 0        "a and b have same precedence"

compare( a, b ) > 0        "a comes after b"

In Java 8, Comparator has many more methods, but you can 
ignore them.  Only compare(a,b) is required.

/** 
 * A Comparator defines an ordering of
 * objects of same class (or class 
 * hierarchy).
 */
interface Comparator<T> {

  public int compare( T a, T b );
}



  

Implementing Comparator

 Order Strings ignoring case

class CompareIgnoreCase
          implements Comparator<String> {
    
   public int compare(String a, String b) {
        return a.compareToIgnoreCase(b);  
        //TODO check that a and b are not null.
   }



  

Another Example

 Order Students by ID.  If the ID is same, then order by 
name.

class CompareById 
          implements Comparator<Student> {
    
   public int compare(Student a, Student b) {
      int comp = 
            Long.compare(a.getId(), b.getId());
      // if ID is same then order by name
      if (comp == 0) comp =
            a.getName().compareTo(b.getName());
      return comp;
   }



  

Exercise: Write a Comparator

Write a Comparator that order strings by length, shortest 
length first.  If length is same, order alphabetically.

String[] words =
        {"ants","cat","dog","Elephant","zebra"};
Comparator<String> byLength =
                        new CompareByLength();
Arrays.sort( words, byLength );

words[0] = "cat"
words[1] = "dog"
words[2] = "ants"
words[3] = "zebra"
words[4] = "Elephant"



  

Sorting a List

You can sort Lists the same way as arrays.

The methods are:

Collections.sort( List list ) - sort a list using compareTo.

Collections.sort( List<T> list, Comparator<T> cmp )

       - sort a list using an external Comparator.

Collections is in java.util.  You should study it.



  

Review

What are 3 methods for sorting an array?

What interfaces have you studied so far in OOP?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

