
Coding Standard & Javadoc

Java Naming Convention

class name begins with Uppercase: Double, String

method name uses camelCase: length(), valueOf()

variable name also uses camelCase: myCoffee

constants use UPPER_CASE and _: MAX_VALUE

package names are all lowercase (with a few exceptions):

java.lang java.io java.time java.util

org.junit

primitive type names are all lowercase:

boolean, char, int, double, long

Example - a Java class

package ku.ske;

import java.util.Scanner;

/** A customer has one or more accounts */

public class Customer extends Person {

 private String customerId;

 private List<Account> accounts;

 public Customer(String name) . . .

 public List<Account> getAccounts()...

 public void addAccount(Account acct)...

Identify each of these

Is it a ...

class

package

primitive type

attribute ("field")

method

 (static or instance)

constant

(static final attribute)

interface (more advanced)

something else???

Martian

org.nerd.hacker

System

System.nanoTime()

System.out

System.out.println()

double

Double

"Hello nerd".length()

Double.MAX_VALUE

java.text

java.util.ArrayList

java.util.Comparable

Use Full Words as Names

Good Name Bad Name

BankAccount BankAct

balance bal

count n

accountId num, id

Exception: short names OK for local variables, esp. loop vars.

double getTotal() {
 double sum = 0.0;
 for(int k=0; k<transactions.length; k++) {
 sum += transaction.getValue();
 ...

Writing Javadoc (Required)

package ku.ske;

/**

 * A Person contains information about a

 * person including name and contact info.

 * @author Bill Gates

 * @since 2014.01.12

 */

public class Person {

 /** person's name, of course */

 private String name;

Must start with a complete
sentence, ending with a period.

@author, @since are tags.
Use only the standard tags.

Method Javadoc

/**

 * Set the person's birthday.

 * @param birthday a date containing the

 * person's birthday. Must not be null.

 */

public void setBirthday(Date birthday) {

 if (birthday == null)

 throw new IllegalArgumentException(

 "Read the javadoc, stupid!");

 this.birthday = (Date)birthday.clone();

 .

Method Javadoc with Return

/**

 * Withdraw money from the coin machine.

 * @param amount is amount to withdraw.

 * @return array of money withdrawn,

 * or null if cannot withdraw the

 * requested amount.

 */

public Money[] withdraw(double amount) {

 if (double <= 0.0) return null;

 .

 .

More Method Javadoc

/**

 * Compare 2 coins by value.

 * @param a the first Coin to compare.

 * @param b the second Coin to compare

 * @return -1 if first coin's value is

 * smaller, +1 if first coin's value is

 * larger, and 0 if values are same.

 * @throws IllegalArgumentException if

 * the currencies are not the same.

 */

public int compare(Coin a, Coin b) {

 .

 .

Bad Javadoc - what's wrong?

/**
 * The Person class
 * @Bill Balmer
 * @Version 1.0
 */
package ku.ske.badcode;
public class Person {
 private String name;
 /**
 * get the firstname
 * @param k is index of first space in name
 */
 public String getFirstname() {
 int k = name.indexOf(' ');
 return name.substring(0,k); // bug?
 }

Good Code has Documentation

// sum elements in the array (BAD: it's obvious)
int sum = 0;
for(int k=0; k<array.length; k++) {
 sum += array[k];
}

 Use documentation to describe a class and its methods.

 Describe what and why – not "how" which is obvious from
the code.

 Describe rationale and logic that is not obvious from code.

No Javadoc = No Credit

Generate Javadoc from your Code

3 ways to create HTML pages from Javadoc:

 the javadoc command

 let Eclipse or BlueJ or Netbeans create it for you

 use an automatic build system, like Maven

Demo

Demo how BlueJ will create Javadoc (HTML) from your
Javadoc comments.

Demo how any IDE gives interactive help using Javadoc,
including Javadoc in your code.

javadoc Command

You can use the javadoc command line to create Javadoc.
 It has many options, only a few are shown here.

First, open a terminal "shell" and "cd" to the top-level
directory of your project:

cmd> cd workspace/lab2

cmd> dir

stopwatch/

util/

This shows your source code is in packages named
stopwatch and util.

Using the javadoc Command

Create HTML doc files in a directory named "docs", and
include everything with visibility package (default) and
above, and include @author tags

cmd> javadoc --frames -author -package
 -d docs stopwatch util

Constructing Javadoc information...
Standard Doclet version 11.0.5
Building tree for packages and classes...
Generating docs/stopwatch/Main.html...
Generating docs/stopwatch/Stopwatch.html...

Generating docs/index.html...

View Your Javadoc!

Open the file docs/index.html in a web browser:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

