

Introduction to Objects & Classes

James Brucker

What is ...

Bicycle
?

Bicycle is a Kind of Thing

Bicycle is something that has:
2 wheels
frame
seat
peddles
gears
color

and it can ...

Bicycle can:
move forward
steer (change direction)
apply power using your legs by pushing

on peddles
stop

How to Describe "Bicycle"

What it has or knows - attributes

What it can do - behavior

"Bicycle has Wheels, Gears, and Moves"

So, what size are the wheels?

Is the bicycle moving?

How many gears?

What color is the bicycle?

How to answer?

So, what size are the wheels?

... it depends on a particular bicycle

Is the bicycle moving?

... it depends on a bicycle and its state

How many gears?

... it depends on a particular bicycle

What color is the bicycle?

... it depends on a particular bicycle

Summary

"Bicycle" describes a class of objects (things).

Definition of "Bicycle" includes:

● attributes (what a bicycle has)

● behavior (what a bicycle can do)

● possible states (moving, parked, ...)

What is an Object?

An object is a particular instance of a class.

An object encapsulates both data and behavior.

An object contains both data and methods that
operate on the data.

Class

A Class is the definition (or blue print) for a kind of object.

A class defines:

attributes - properties of object of this class

behavior - what it can do

states - how behavior depends on values of attributes

Objects - Conceptual meaning

Objects represent "things" in the problem domain.

Examples:

Banking app: money

 bank account

 customer

Board game: game board

(chess) game piece

 player

Objects - your turn

Suppose you are writing an e-commerce application.

What are some kinds of objects you would need to model
an e-commerse application?

3 Characteristics of Objects

Objects have

Behavior - what an object can do

Attributes or Data - what an object knows,

 or other objects it knows about (references)

Identity - two objects are unique, even if they have the
same type and state

Name some Classes in Python

_________ - class for strings

datetime.date - dates on a calendar

_________ - numbers like 1.25

Creating Objects from Classes

s = str("hi there") # create a string

d = datetime.date(2020, 12, 25)

f = 1.25

String Class & Object in Java

Consider a String object:

String s = "Hello";

What are the...

 attributes - what the object knows (also called fields)

 behavior - what the object can do (its mehods)

s: String

length = 5

value= {'H','e','l','l','o'}

length()

charAt(int)

substring(start, end)

toUpperCase()

attributes are information an
object remembers or stores
Also called: fields

behavior is what the object
can do.
Also called: methods

Objects have Behavior

To invoke an object's behavior, write:

object.method()

>>> import datetime

>>> xmas = datetime.date(2020, 12, 25)

What day of week is Christmas?

>>> xmas.ctime()

"Fri Dec 25 00:00:00 2020"

A variable that
refers to the object

A method that
belongs to the object

Where does Behavior Come From?

An object's behavior is determined by …

1. methods defined in the object's class.

and

2. methods the class inherits from superclass,
or super-superclass, etc.

Attributes for Knowing stuff

Attributes store what an object knows.

Attributes are also called fields.

Example: a Bank Account knows its account number,
owner, and balance.

BankAccount

owner: String
accountNumber: String
balance: double

getBalance(): double
credit(amount: double)
debit(amount: double)
getName(): String

Objects have Identity
Two dates are distinct even if they have same values:

>>> x = datetime.date(2020, 1, 1)

>>> y = datetime.date(2020, 1, 1)

>>> x == y

True

>>> x is y

False

>>> id(x) # every Python object has an id

139932742733136

>>> id(y)

139932742747800

strings are tricky
Python and Java consolidate ("pool") string constants.

>>> x = "dog"

>>> y = str("dog") # should be a new string

>>> x is y

True

>>> y = "DOG".lower()

>>> y

'dog'

>>> x is y

False

>>> x == y # this invokes x.__eq__(y)

True

Object Identity Example
 Two new Honda Civic cars made at the same factory on the

same day with the same features ... can be distinguished.

!=

Identity and == in Java

In Java, x == y always tests if x and y refer to the same
object.

Objects are unique, even if their states are the same

 Integer a = new Integer(10);

 Integer b = new Integer(10);

 a == b // false - a and b refer to unique objects
Java primitive types only have a value, they are not

objects.

int n = 10;

int m = 10;

n == m // true - they are the same value

Definition:

"A class is a blueprint or definition for a kind
of object."

Sale class defines the attributes of a sale.

Sale class defines the behavior (methods) of a sale.

Sale class defines how to create a sale.

Class defines a kind of object

Memorize this.

Two Ways to Create Objects

1. Invoke the constructor

2. Some classes have a factory method to create objects

>>> date = datetime.date(2020,5,1)

>>> now = datetime.date.today()

today() is a class method of date class

Creating Objects in Java

1. Use "new" to create an object from a Class.

2. Some classes have a factory method to create
objects.

Date xmas = new Date(2020,11,25);

LocalDate xmas = LocalDate.of(2020,12,25);

LocalDate today = LocalDate.now();

A Variable is NOT an Object

A variable is only a reference to an object, not the actual
object.

>>> s = "hi" s is NOT a string object

>>> x = [1,2,3] x is NOT a List object

Other Use for Classes

Some classes don't represent "kinds of things".

Other uses are:

1. provide services

2. programming artifice - helps our code, but
class has no meaning in the problem domain

Class as Services

Math (Python math) provides services for doing math:

 Math.sqrt(x)

 Math.hypot(x, y)

 Math.ceil(1.00001)

System provides access to operating system services

 System.out - object connected to console output

 System.in - object connected to console input

 System.getenv(("USER") - get environment variable

Class as Artifice: "application class"

We usually write a Main or Application class that does:

a) create initial objects

b) connect objects together (set references)

c) start or "run" the app

This class is useful, but doesn't represent a real thing.

public class GuessingGameApp {

 public static void main(String [] args) {

 Game game = new Game(100 /* max secret */);

 GameUI ui = new GameUI(game);

 ui.run();

 }

Review

1. What is the definition of a class in OOP?

2. What are the 3 characteristics of objects?

3. How do you create a Date object for the date Feb 15,
2000?

4. Is this true or false? Why?

Double x = new Double(1.0);

Double y = new Double(1.0);

(x == y)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

