

Input & Output Classes

Java’s Hierarchy of Input/Output Classes
and Their Purpose

Introduction

 Java has a hierarchy of input classes for different
purposes.

 The base class is InputStream, which reads input as
bytes. It has many subclasses, like FileInputStream
and DataInputStream.

 Other input classes convert the input into characters,
strings, or primitive data types.

– Those classes (almost) all get the bytes they
need from in InputStream.

 Java's output classes use a similar design.

.

Sources of Input

An application can read input from:

 console or terminal

 file on disk, USB drive, etc.

 URL on the internet

 a sensor, using its device driver

 a microphone or camera, using its device driver

 another process (output of another application)

 other sources

What's in a File?

A file contains bytes, grouped into blocks (usually 512
bytes per block).

Only bytes -- 0's and 1's.

Not text, characters, or images.

Only Bytes.

What about Text Files? PNG?

Text, images, sound, etc. depend on how the application
interprets the bytes in a file.

JPEG, PNG, GIF - a standard for how to read and write
bytes that represent an image.

MP3 - a standard for how to interpret bytes so they can
be rendered (by software) as sound.

TXT - bytes represent codes for characters, using a
standard character encoding. Depending on the
encoding, one character may be more than one byte in a
file.

Text File Example

Suppose we want to write this to a file:

cat
What data is actually written to the file?

If we use ASCII or Unicode UTF-8 encoding for the
characters, the file would contain:

binary hexadecimal

0110001101100001
0111011100001010

6361740A

Hex 63 is the code for 'c'. The last byte (hex 0A) is a newline. It is
added by a text editor or Java's System.out.println().
Each hex digit represents 4 bits, e.g. 3=0011, 6=0110, A=1010,

Text File Example Explained

1. "encode" each character according to a character set
and encoding. For ASCII, UTF-8, and many others:

 'c' = x63 (hexadecimal 63, or binary 0110 0001)

 'a' = x61

 't' = x74

2. at the end of each "line" of text is a line-end character.
This is usually newline (hex 0A):

 '\n' = x0A

 Old MacOS apps use a "carriage return" (hex 0D)
instead of newline.

Numerical Example

How can we save the value of Math.PI to a file?

3.141592653589793

If we write it as text (characters) the result would be

hexadecimal view of file (spaces added for clarity):

34312e33 32393531 35333536 39373938
00000a33

20 bytes. But this is a waste!

Math.PI is a double value using 8 bytes in memory.
If we write the actual binary value (as in memory) to file, it would
only need 8-bytes, and no data lost in converting to decimal digits.

Writing Binary Values

Java has a DataOutputStream class for writing primitive
values (byte, int, long, double) directly to a file in binary
form without converting to text form.

Writing Math.PI to a file in binary form, the file contains

hexadecimal view of file:

0940 fb21 4454 182d

Only 8 bytes! (2 hexadecimal digits = 1 byte)
MP3, JPEG, PNG, MPEG all contain data in binary format,
as in the example above. It is faster and smaller than writing
numeric data as text.

The Important Lesson

Data on computers is read and written as bytes.

"Text" is an interpretation of those bytes as characters.

"Text" requires use of a character set and character
encoding to translate chars to bytes or bytes to chars.

"Binary format" refers to a file where the data is stored
directly in a binary encoding, without converting to
text.

Classes for Input

InputStream read input as bytes

Reader, read input as characters
InputStreamReader

BufferedReader read entire lines as Strings

DataInputStream read data as primitive values

 (byte, int, float, double)

InputStream

buffer = new StringBuffer();

while (true) {

 int c = inputStream.read();

 if (c < 0) break; // end of input

 buffer.append((char)c);

}

Reads input as bytes. read() returns 1 byte.

If no more data, read() returns -1.

InputStream with array of byte

byte[] buff = new byte[1024];

while (true) {

 int count = inputStream.read(buff);

 if (count <= 0) break; // end

 // process buff[0] ... buff[count-1]

}

Reading 1 byte at a time is slow.

It is usually faster to read many bytes into an array.

Why byte[1024]?

You can make the byte array any size you like.

However, at a lower level the operating system reads
and "buffers" input in "blocks".

1 block is usually 512, 1024, 2048, or 4096 bytes.

So, its efficient to use code that matches this.

int BUFF_SIZE = 512; // or 1024, 2048, 4196, or 8*1024

byte[] buff = new byte[BUFF_SIZE];

int count = in.read(buff);

Do & test programming Idiom

buffer = new StringBuffer();

int c = 0;

while ((c=inputStream.read()) >=0) {

buffer.append((char)c);

}

This kind of code is common in C.

It calls read(), sets the value of c, then tests the result.

When there is no more input, read() returns -1.

InputStream with array error

byte[] buff = new byte[512];

count = inputStream.read(buff);

// ERROR! buff may contain junk

String data = new String(buff);

read(byte[]) may not fill the entire array (buff)!

Always check count of bytes read.

Do not assume that count == buff.length !

read() returns actual # bytes read

byte[] buff = new byte[512];

count = inputStream.read(buff);

// Correct: only use byte[0] ... [count]

String data = new String(buff, 0, count);

// or

out.write(buff, 0, count);

int count = in.read(buff);

count is actual number of bytes read.

Do not assume that count == buff.length !

FileInputStream
 An InputStream connected to a file.
 Has many constructors.
 Works just like InputStream! (its a subclass)

InputStream inputStream =
 new FileInputStream("c:/test.dat");

while (true) {
 int c = inputStream.read();
 if (c < 0) break; // end of input
 buffer.append((char)c);
}
inputStream.close();

Text Input Class Hierarchy

 Each layer "adapts" a lower layer to provide a different
interface.

InputStream

read bytes

Reader

read chars

BufferedReader

read Strings

read bytes from

read characters from

Reader

 Reader: reads bytes and converts to chars.
 Interprets bytes using a Character Set Encoding.
 Usually uses an InputStream as input source.

Input
Data

Source

InputStreamReader reader =
 new InputStreamReader(
 System.in, "MS874");
// read one character
int c = reader.read();
// read array of chars
int n = reader.read(char[] c);

Reader
object

Character
Set

InputStreamReader class

InputStreamReader is a kind of Reader.

It gets data from an InputStream (any InputStream object)

InputStream in = new FileInputStream("test");

// InputStreamReader "wraps" an InputStream

InputStreamReader reader =

 new InputStreamReader(in);

// read a character

char b = (char)reader.read();

// read several characters together

char[] buff = new char[1024];

int nchars = reader.read(buff, 0, buff.length);

// close the input stream

reader.close();

Shortcut: FileReader

FileReader opens a file and creates InputStreamReader
for it. (Automatically creates a FileInputStream.)

InputStreamReader reader =

 new FileReader("filename");

// read a character

char b = (char) reader.read();

BufferedReader class

BufferedReader reads input as Strings.

It uses a Reader to read characters.

1. Read from System.in

BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));

// read a line
String s = br.readLine();

InputStream in = new FileInputStream("file");
Reader reader = new InputStreamReader(in);
BufferedReader br = new BufferedReader(reader);
// read a line (removes newline char)
String s = br.readLine();

2. Read from a file.

BufferedReader methods

Buffered Reader methods:

int read() - read next char

int read(char[], start, count) - read chars into array

String readLine() - return a string containing rest of the line

close() - close the reader

ready() - inquire if there is data ready to be read (avoid blocking)

BufferedReader for File Input

To read from a file, create a BufferedReader around a FileReader.

The ready() method returns true if (a) the input buffer contains data

or (b) underlying data source is not empty (when reading from file).

ready() is used to avoid "blocking" the application during a read.

String filename = "mydata.txt";
BufferedReader br = new BufferedReader(

 new FileReader(filename));
// read lines as long as more data
while(br.ready())
{

String s = br.readLine();
// do something with the string

}
br.close();

BufferedReader and End-of-Data

The readLine() method returns null if the end of input stream
is encountered. Use this to detect the end of input or file.

String filename = "mydata.txt";
BufferedReader br = new BufferedReader(

 new FileReader(filename));
// read all data
String line;
while((line=br.readLine()) != null)
{

// process the data
System.out.println(line.toUpperCase());

}
br.close();

Character Sets

There are many language-specific character sets:

Extended ASCII - encoding for English, 1 byte per char

ISO-8859-11 - one-byte encoding for Thai chars

TIS-620 - another one-byte encoding for Thai chars

 Having many character sets and encodings means its
hard to know what a file contains.

 You have to know the character set and encoding that
was used to write text the file.

Character Sets

Java API docs list names of character sets.

InputStreamReader reader

 = new InputStreamReader(inputStream, "charset");

Charset Name Description

ASCII ASCII 7-bit encoding

ISO8859_1 ISO 8859-1 Latin alphabet No. 1

Cp874 IBM (DOS) Thai encoding

MS874 MS Windows Thai encoding

TIS620 TIS-620, Thai encoding

UTF-8 8-bit UTF encoding

UTF-16 16-bit UTF encoding

Unicode and UTF-8

UNIcode is a universal standard that includes character
codes for all alphabets. See them all at:

https://unicode.org

Most languages use a variable-length encoding of
Unicode to save space.

By default, Java reads/writes using UTF-8 encoding.

UTF-8 needs 1 byte per char for English alphabet,

but 2-3 bytes per char for Thai alphabet.

Unicode Text Example

Write this string to a file (use Java code or a text editor).

If you use a text editor, verify that it uses UTF-8 encoding.

สวัสดี
If you 'type' or 'cat' the file on a terminal it will show
"สวัสดี", because the console also understands UTF-8.

If you look at the bytes in the file, it contains:

hexadecimal (2 hex chars = 1 byte)

e0b8aae0 b8a7e0b8 b1e0b8aa e0b894e0 b8b5

18 bytes! Why?
Using 2-byte per Unicode character, you would expect it
to be 12 bytes. UTF-8 makes Thai text longer.

Input Streams & Reader Summary

Java has a Reader class for common InputStream classes.

InputStream Reader
InputStream InputStreamReader

StringBufferReader
FilterInputStream FilterReader
FileInputStream FileReader
PipedInputStream PipedReader

Read Primitive Values in Binary Form
DataInputStream

Scanner

java.util.Scanner is a general parser for text files. It
also provides data conversion (int, double, String, etc).

Scanner reads from an InputStream or a String.

// scanner to read an InputStream

InputStream in = new FileInputStream(...);

Scanner scanner = new Scanner(in);

// scanner to parse a String

String s = "Peanuts 10.0 Baht";

Scanner scan = new Scanner(s);

Using Scanner

Convert next token into any primitive or get a line as String.

Scanner scanner = new Scanner("3 dogs .5");
if (scanner.hasNextInt())

n = scanner.nextInt(); // 3
if (scanner.hasNext())

word = scanner.next(); // "dogs"
if (scanner.hasNextDouble())

x = scanner.nextDouble(); // 0.5
// read and discard rest of this line
scanner.nextLine();

Output

Classes for Output

OutputStream write output as bytes

Writer, write characters and strings
OutputStreamWriter to an OutputStream

BufferedWriter writes text (Strings) to an
OutputStream

PrintStream like Writer but adds methods to
convert other data types to string,
and create formatted output.

DataOutputStream write primitive values (byte, int, float,
double) in binary format, in a portable
way

The hierarchy of output classes is similar to Java's input classes

OutputStream

 OutputStream writes bytes to some output destination
 No interpretation of characters.
 Has several subclasses, such as FileOutputStream.

Output
Data

OutputStream out = ... ;
// write 1 byte
out.write(b);
// write array of bytes
out.write(byte[] b);
// flush buffered data
out.flush();
// close output stream
out.close();

OutputStream
object

Writer

 Writer converts characters and strings to bytes.
 Interprets chars according to character set encoding.
 Uses an OutputStream to "output" the bytes.

Output
Data
Set

OutputStreamWriter out =
 new OutputStreamWriter(
 System.out, "MS874");
// write one character
out.write(c);
// write array of characters
char [] ca = ...;
out.write(ca);

Writer
object

Character
Set

PrintStream

PrintStream is a convenience class for writing to text files.

It is a subclass of OutputStream, but methods do not throw
IOException (so you don't need try - catch).

System.out is a PrintStream object.

print(int n) - print primitives in text form, e.g. 10, -5

print(float f)

etc.

println(n) - same as print() but appends newline

printf("format", arg1, arg2, ...) - formatted output

format("format", arg1, arg2, ...) - same as printf

Output Streams and Writers

Java has several classes derived from OutputStream
and Writer. Each class handles a particular output sink.

OutputStream Writer
OutputStream OutputStreamWriter
FilterOutputStream FilterWriter
FileOutputStream FileWriter
PipedOutputStream PipedWriter

StringWriter

Writing Binary Data
DataOutputStream

Handling Exceptions

Two common exceptions thrown by I/O methods:

IOException - cannot perform a read or write

FileNotFoundException - file not found, or you don't
have permission to access the file.

Less common, but may occur...

SecurityException - Java's security manager denies
access to the file.

Handling Exceptions

Your code must deal with these exceptions in one of two
ways:

1. Declare that method may throw exception:
public void myMethod(params) throws IOException{

// body of method

}

2. Catch the exception and take some action. See next
slide.

Catching an Exception

BufferedReader reader = null;
try {

reader = new BufferedReader(
new FileReader(filename));

} catch (FileNotFoundException ex) {
System.out.println(

"Couldn't open file " + filename);
return;

}
// read a line from file
try {

String s = reader.readLine();
// do something with string

} catch (IOException ex) {
System.out.println(

 "Exception reading file: " +ex);
}

Using Files

Many I/O classes operate on File objects.

Create a File object by specifying the filename and
optional path:

File file1 = new File("input.txt"); // in "current" directory

File file2 = new File("/temp/input.txt"); // in temp dir

File file3 = new File("\\temp\\input.txt"); // same thing

File file4 = new File("/temp", "input.txt"); // same thing

File dir = new File("/temp"); // open directory as a file

These commands do not create a file in the computer's
file system. They only create a File object in Java.

Testing Files

File has methods to:
 test file existence and permissions (can read?)
 create a file, delete a file
 get file properties, such as path

File file = new File("/temp/input.txt"); // file object

if (file.exists() && file.canRead()) // OK to read?
FileInputStream fin = new FileInputStream(file);

if (! file.exists()) file.createNewFile(); // create a file!
if (file.canWrite()) // OK to write?

FileOutputStream fout = new FileOutputStream(file);

More File Operations

File file = new File("/temp/something.txt"); // file object

if (file.isFile()) {
/* this is an ordinary file (not a directory or link) */
long length = file.length();
long date = file.lastModified();

}

if (file.isDirectory()) {
/* this is a directory */
File[] files = file.listFiles(); // files in the directory

}

File objects can tell you their size, location (path),
modification time, etc. See the Java API.

File Copy Example

File infile = new File("/temp/old.txt");
File outfile = new File("/temp/new.txt");
if (outfile.exists()) outfile.delete();
outfile.createNewFile();

FileReader in = new FileReader(infile);
FileWriter out = new FileWriter(outfile);
// reading 1 char at a time is inefficient
int c;
while ((c = in.read()) >= 0) out.write(c);
in.close();
out.flush(); // flush any data from buffer
out.close();

Example of how to use a File, but not good code.

You also must catch IOException.

Extra Topics (Optional)

1. Reading & Writing Binary Format Data

2. Read without blocking (waiting for input)

3. Random Access versus Sequential Access

4. Using a Pipe - you write data to one end and read it
from the other end

5. Unicode for Thai

Reading Binary Data

Examples: MP3 file, image file

Advantages:
 smaller size, faster, less loss of precision in numbers

Has methods for reading primitive values.

InputStream in = new FileInputStream("mydata");

DataInputStream data = new DataInputStream(in);

try {

int n = data.readInt(); // 4 byte integer

double x = data.readDouble(); // 8 byte double

char c = data.readChar(); // 2 byte unicode

}

catch (IOException e) { ... }

End-of-File for DataInputStream

 Throws EOFException if end of input encountered
while reading.

InputStream in = new FileInputStream("mydata");
DataInputStream data = new DataInputStream(in);

// read doubles until end of file
double sum = 0;
while(true) {

try {
double x = data.readDouble(); // read 8 bytes
sum += x;

} catch (IOException e) { ... }
catch (EOFException e) { break; } // End of File

}
data.close();

Writing Binary Data

DataOutputStream methods similar to DataInputStream

OutputStream out = new FileInputStream("mydata");

DataInputStream data = new DataInputStream(out);

long studentId = 6010541234L;

double score = 90.3;

char grade = 'A';

try {

 data.writeLong(studentId); // 8 byte long

 data.writeDouble(score); // 8 byte double

 data.writeChar(grade); // 2 byte char

}

catch (IOException e) { ... }

How to Read without Blocking

InputStream has an available() method that returns
the number of bytes waiting to be read.

Use this to read without blocking (waiting for input).

Reader classes have a ready() method.

InputStream in = System.in; // any InputStream

// read whatever bytes are available
int size = in.available();
if (size > 0) {

byte[] b = new byte[size];
in.read(b); // this should not block

}

Sequential Access

 Read/write sequentially starting from the beginning.
 Cannot "back up" and reread or rewrite something.
 Cannot "jump" to arbitrary location in stream.

 InputStream and OutputStream use sequential I/O.
 InputStream has a skip(n), but it is still sequential.

eS q u i a l I O. . .e n t

int a = instream.read(); // read a = 'S'
byte[] b = new byte[10];
int count = instream.read(b); // read next 10 bytes

Random Access

 Can move to any location using seek() method.
 Can move forward and backward.
 Only makes sense for files.

aR n d A c c I O. . .o m

File file = new File("c:/data/myfile.txt");
RandomAccessFile rand =
 new RandomAccessFile(file, "r");
rand.seek(7L); // goto byte 7 ('A')
int b = rand.read(); // read one byte ('A')

RandomAccessFile

 Random Access I/O means you can move around in
the file, reading/writing at any place you want.

 For output, you can even write beyond the end of file.
 Use seek() to move current position.

RandomAccessFile ra = new RandomAccessFile("name", "rw");

ra.seek(100000L); // go to byte #100000

byte[] b = new byte[1000];

// all "read" methods are binary, like DataInputStream

ra.readFully(b); // read 1000 bytes

ra.seek(200000L); // go to byte #200000

ra.write(b);

Reading and Writing Pipes

PipedOutputStream pout = new PipedOutputStream();

PipedInputStream pin = new PipedInputStream(pout);

PrintStream out = new PrintStream(pout);

BufferedInputStream in = new BufferedInputStream(pin);

out.println("data into the pipe"); // write to the pipe

String s = in.readLine(); // read from the pipe

One object writes data into the pipe, another object reads data
from the pipe.

Useful for multi-threaded applications.

PipedOutputStream pout =
 new PipedOutputStream();

PipedInputStream pin =
 new PipedInputStream(pout);

Unicode For สวัสดี
The Unicode for the Thai chars used in the example are

(with vowels list after the consonant):

 ส = 0E2A
 วั = 0E27 0E31
 ส = 0E2A
 ดี = 0E14 0E35

Print Unicode in Java:

String s = "\u0e2a\u0e27\u0e31\u0e2a\u0e14\u0e35";

System.out.println(s);

More Information

Oracle Java Tutorials (online)

Basic I/O
https://docs.oracle.com/javase/tutorial/essential/io/

Handling Exceptions
https://docs.oracle.com/javase/tutorial/essential/
exceptions/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

