Reading Text Files

Page 3

Reading Text Files

InputStream and its subclasses read bytes. InputStreamReader reads input as characters. An InputStreamReader generally uses an InputStream (or subclass) as the source of bytes to use.
1. Use an InputStream and an InputStreamReader. This is the most flexible method since you can use any InputStream, including one that reads a file or URL. You can read 1 character at a time or read an array of chars (faster).
You must add try-catch to catch exceptions.
 InputStream in = new FileInputStream(filename);
 InputStreamReader reader = new InputStreamReader(in);
 String result = "";
 // read each character until you get -1, which means end-of-file
 int c = in.read(); // use a "while" loop to read chars
 if (c >= 0) result = result + (char)c;
 // you can read into an array of chars (faster)
 int size = 1024;
 char[] chars = new char[size];
 int count = reader.read(chars, 0, size);
 count is the number of chars actually read. Don't assume that the array is full!
 // when you get to the end, close the file. Use a separate try-catch block.
 if (reader != null) reader.close();
2. Use a FileReader. This is a convenience class for reading text files.
 FileReader reader = new FileReader(filename);
 the rest of the code is same as case 1.
3. Use a BufferedReader. BufferedReader can read a file as "lines" and create Strings.
 It also requires using try - catch to catch IOException.
 When you reach the end of the input, readLine() returns null.
 FileReader reader = new FileReader(filename);
 BufferedReader br = new BufferedReader(reader);
 StringBuilder result = new StringBuilder();
 String line;
 // readLine() returns one line from file or null at end
 while((line = br.readLine()) != null)
 result.append(line).append('\n');
 // close the file - use try-catch here.
 if (br != null) br.close();
4. Use a Scanner. Scanner is slower than BufferedReader but can convert input to many datatypes.
 FileInputStream input = new FileInputStream("filename");
 Scanner scanner = new Scanner(input);
 // or use a File object
 File file = new File("filename");
 Scanner scanner = new Scanner(file);
Exercises

1. Type contents of a file on the terminal (Echo.java)

1.1 Write a class named Echo.java with 3 methods:

(1) main method that opens each file using the args[] array as filenames,

(2) static echo(InputStream) method that reads the file (byte by byte) and outputs to System.out,

(3) static help method - prints a useful help message and exits the program, used to provide help.

1.2 main expects the parameters to be the names of one or more text files.

public static void main(String [] args) {

// loop: treat each args[k] as a filename to print

if (args.length == 0) help();
1.3 Use each args[] string as a filename and open it as a FileInputStream. Pass the InputStream to the echo() method. FileInputStream will throw a FileNotFoundException if a file cannot be opened. Catch this exception, print a descriptive error message, and exit.

try {

InputStream instream = new FileInputStream(args[k]);

echo(instream);

} catch (FileNotFoundException fne) {

// print a message that this file not found or cannot be opened.

// Use System.err instead of System.out Then exit.

}

1.4 Write the echo method. Read the file as bytes and print the contents on the console. Try text file containing both English and Thai to discover if this works.
1.5 The echo() method should close when it is done.

2. Echo using Characters

Echo a file containing Thai text. It may not display correctly because InputStream performs byte-level input. We should use character-level input for text.

2.1 Modify Echo to use a Reader object (created from one of its subclasses). There are 2 ways to create an InputStreamReader:

(1) create a Reader using an InputStream (this is the most common way):

instream = new FileInputStream(filename);

Reader reader = new InputStreamReader(instream);
(2) create a FileReader using a filename:

FileReader reader = new FileReader(filename);

2.2 Write a new echo() method that has an InputStreamReader as parameter. Read the input as char and write char. Even though reader.read() returns type int, it reads a char. Modify your code to read from reader and write a char. Can you print files containing Thai text now?

int c = reader.read();

while (c >= 0) {

System.out.write((char)c);

// read the next characters

3. BufferedReader

Reading one character at a time is slow. Modify echo() to create a BufferedReader. Then read and print a line (as String) at a time.

4. Read a URL

Read a file from the network using the HTTP protocol. Java lets you use a URL to open a network resource, such as a file on a web server. For example, "http://se.cpe.ku.ac.th/index.html".

1. Write a method to create a URL and open it as an InputStream. You must catch MalformedURLException.

import java.net.URL;

...

try {

URL url = new URL("http://se.cpe.ku.ac.th/robertfrost.txt");

InputStream instream = url.openStream();

// print this stream on the console

}

catch (MalformedURLException ex) { ... }

5. Read from a Socket

URL is used to read streams using standard protocols such as http or ftp. To read directly from a network connection, use a Socket. To connect a socket you need a hostname or host address and a port number (1-65,565). As a test, use ports 17 (quote service) or 13 (time of day). These used to be standard Unix services. These days they are disabled by default, but you may be able to run them on your machine or find a host that is running them.

String host = "158.108.32.15";

int port = 17;

try {

Socket socket = new Socket(host, port);

InputStream in = socket.getInputStream();

 //TODO print the contents of InputStream on the terminal

if (socket.isConnected()) socket.close();

} catch(UnknownHostException uhe) { /* print it */ }

catch(IOException ioe) { /* print it */ }

