

Java Program Structure

James Brucker

Where's the Source Code?

In Java, all source code is contained in classes.

A class defines a kind of object.

and the object's attributes and behavior.

You create objects from a class.

Creating Objects

Use "new" to create an instance (object) of a class.

new Date()

To refer to the object again later, you usually want to assign
a reference to it:

Date d = new Date();

What does "new Date()" mean? How about this:

Date d = new Date(112, 2, 20);

Answer: it depends on the source code.

Defining your own class

To define a new kind of object, you write a Java class.

For example, in the coin purse project, we want to have
"coins" that remember their value, so we define a Coin
class.

Class Structure

import java.util.Scanner;

/**

 * Describe this class.

 * @author Bill Gates

 */

public class Coin {

}

// No code allowed here!

constants

attributes

constructors

methods

import other classes

Javadoc comment describes
this class.

Start of the class

End of the class

Attributes

attributes of a Person:

a Person has a name
and a birthdate.

Attributes are what an object knows.

An ttribute is represented as a variable.

import java.time.LocalDate;

public class Person {

 private String name;

 private LocalDate bday;

 // methods go here

}

Declaring Attributes

public class Person {

/** person's name */

private String name;

Visibility

public

protected

(package)

private

Data Type

primitive

class name

interface

array

Variable Name

name of attribute

should start with
lowercase

Javadoc for attribute

Common Java Data Types

Some data types used in Java are:

Data Type Examples

int -100 ... -1 0 1 2 ... 2147483647

double 0.5 -3.70 2.98E+8

boolean true false

String "Hello" "I'm hungry" "turn left"

List
ArrayList

Collection of things.
List list = new ArrayList();
list.add("apple"); list.add("orange");

Initialize All Your Attributes!

public class Person {
private String name;
private LocalDate birthday;

/** initialize a new person object */
public Person(String name) {

this.name = name ;
}

Two ways to initialize attributes:

1. assign a value as part of declaration, or

2. (better) initialize in a constructor

3 Kinds of Comments

/**
 * Javadoc comment describes this class.
 */
public class Greeter {
 /*
 A multi-line comment can be
 very long.
 */
 public static void method1() {
 // a single line comment
 System.out.print("This is method1");
 int n = 0; // end-of-line comment
 }
}

The compiler
ignores
comments.

Javadoc
comments
create online
documentation
for your code.

Constructor Initializes a New Object

/** initialize a new coin */

public Coin(double value) {

this.value = value ;

}

Coin ten = new Coin(10);

Constructor has the same name as the class.

Constructor does not have a return value. Not even
"void".

"this" means "this object". "this" is used to distinguish
between the parameter value and attribute value.

How Objects are Created

new Coin(10) Java creates object in memory

// constructor's job is to

// initialize a new object

public Coin(double value) {

this.value = value

initialize state of object
by invoking constructor

Correct this Code

public class Coin {

 private double value;

 public void Coin(double value) {

 this.value = value;

 }

This code has
legal syntax,
but it is not a
constructor.

More than One Constructor

public class Coin {
/** default constructor */
public Coin() {

this.value = 0;
this.currency = "THB";

}
public Coin(double value) {

this.value = value;
this.currency = "THB";

}
public Coin(double value,

String currency) {
...

A class can have
many constructors,

if they have different
parameters.

Default Constructor

public class Coin {

private double value;

public Coin() {

 this.value = 0 ;

 this.currency = "THB";

}

Coin zero = new Coin();

A constructor with no parameters is called the default
constructor.

Avoid Duplicate Code

public class Coin {
/** default constructor */
public Coin() {

this.value = 0;
this.currency = "THB";

}
public Coin(double value) {

this.value = value;
this.currency = "THB";

}
public Coin(double value,String currency)

{
this.value = value;
this.currency = currency;

These 3 constructors
all do the same thing.

Constructor calls Constructor

 public Coin() {
this(0, "THB");

}
public Coin(double value) {

this(value, "THB");
}
public Coin(double value, String curr) {
 if (value < 0)

 throw new IllegalArgumentException(...);
 this.value = value;
 this.currency = curr;
}

A constructor can call another constructor using "this()",
but it must be the first statement in constructor.

Methods

 The behavior of objects is defined in methods.

 Methods contain the program's logic.

String makeHint(int guess) {
if guess == this.secret

return "You're right!"
else if guess < this.secret

return "too small"
...

}

name of method

instructions for this
method

Method in Java

public void makeHint(int guess) {

.

.

.

.

}

name of the method
return value (nothing)

instructions

of the method ("body")

end of this method

start of method body

The Body of a Method

public void act() {

move();

turn(30);

move();

}

list of
instructions

The body of a method is a list of instructions.

Instructions are executed from top to bottom.

You can use a { block } anywhere

if (guess > this.secret) {

}

else {

}

You can use { } for "else" or "while" or ...

else block

block of statements for
"then" case

block of statements for
"else" case

Writing a Method that Returns Result

public class Coin {

private int value;

/** compare 2 coins by value */

public int compareTo(Coin other) {

int diff = this.value - other.value;

return diff;

}

}

this method returns an "int" value

Method with a Parameter

We use parameters to give information to a method.

turn left

turn 15 degrees

can see a Worm ?

move to x , y

Behavior in English
with parameter

Method in Java
with parameter

turn(-90)

turn(15)

canSee(Worm.class)

setLocation(x, y)

Writing a Method with Parameter

the parameter name

/* Create some Coins */

void makeCoins(int howMany, int value) {

int count = 0;

while (count < howMany) {

list.add(new Coin(value));

count = count + 1;

}

}

specify the data type
of the parameter value

Attributes for Knowing Things

An object has to remember information.

A class defines the attributes of a kind of object.

Attributes are what an object knows

Purse
capacity: int

coins: Coin[*]

getBalance()

getCapacity

insert(Coin)

isFull()

withdraw(amount)

Attributes -

what a Purse knows

Methods -

what a Purse can do

See attributes of an Object

In BlueJ, you can "inspect" attributes of an object.

1. Create an object: now = java.time.LocalDate.now();

2. Type now on a line by itself, then drag to object
workbench.

3. Right click and choose "Inspect". What are attributes?

Defining an Attribute

Attributes should be defined near top of class.

Attribute has a visibility, data type, and name.

You can optionally initialize its value.

class Coin {

 private int value = 0;

private:

Only this
class can see
value.

The type of data
we want to store.

The name of
this attribute

Memory

0

Attributes of an
object are also
called "fields"
or "properties".

Assigning and Changing a Value

We can change the value of a variable as often as we
like. To assign a value use:

count = 0;

count = count + 1;

variableName = some expression;

expressionassign to

Memory

1

variable =

0

Values and References

 A variable of a primitive type like "int" contains a value
of the primitive.

 A variable of an object type like Coin is a reference.

Variables as References

A variable can be used to reference an object.

 A reference (variable) is how one object sends a
message to another object.

Example:

A mobile phone contact is a reference to another object,
such as a mobile phone number ...

My Contacts

Alice

Duke

 ...

081-555-1212

Variables as References (2)

A variable is a reference to another object.

Example:

A Purse contains a reference to a List of coins.

The List contains references to Coin objects.

A Purse has a capacity which is just a value (int).

Purse

capacity: int

coins: List

 ...

ArrayList<Coin>

size: int

coins: array

 ...

coin[0]

coin[1]

coin[2]

Variables as References (3)

void describe(Purse purse) {

int balance = purse.getBalance();

if (purse.isFull()) ...

Use a reference to ask as object some questions, using
the object's methods.

Local Variables

Variables defined inside a method are local variables.

(1) can only be used inside the method

(2) deleted when the method returns

public class Purse {

 public int getBalance() {

 int balance = 0;

 for(int k=0; k<coins.size(); k++) {

 // add coins.get(k) to balance

 }

Local variables
are defined
inside a
method.

3 Types of Variables

An object has access to 3 kinds of variables:

Attributes of the object

Static attributes of the class

Local variables and parameters - inside one method

Local Variables vs. Attributes

An attribute is something an object remembers for its whole life.

A local variable is for temporary data. It is deleted when
execution leaves the method.

public class Purse {

 private int capacity;

 private List coins;

 public int getBalance() {

 int balance = ...;

 return balance;

 }

A purse must remember its
capacity and coins

balance is a local variable.
getBalance() recomputes it
each time.
Don't need to remember it.

Static Method as Service

Some classes provide a "service".

A service is something that the class does, but is not
associated with any object.

Services are defined by static methods.

Get the current system time in milliseconds:

System.getTimeMillis();

Name of Class static method name

Service: method without an object

Some other service (static) methods:

Square root:

double r = Math.sqrt(2);

Convert a String to an integer:

int value = Integer.parseInt("123");

Play a sound in Greenfoot:

Greenfoot.playSound("starwars.wav");

These methods are performed by a class, not an object:

Service methods are static

A method that doesn't belong to an object is called static.

Math.sqrt(2) - static method in the Math class

Integer.parseInt("1") static method in Integer

To create a static method, add the word "static":

/** distance between points (x1,y1) and (x2,y2) */

public static double distance(x1, y1, x2, y2) {

// hypot computes hypothenous of a triangle

double d = Math.hypot(x1 - x2, y1 - y2);

return d;

}

Java Naming Convention

class name begins with Uppercase: Coffee, String

method name uses camelCase: getMoreCoffee()

variable name also uses camelCase: myCoffee

constants use UPPER_CASE and _: MAX_VALUE

package names are all lowercase (but not always):

java.lang java.io java.util org.junit

primitive type names are all lowercase:

boolean, char, int, double, float, long

What are these?

Is it a ...

package

class

primitive type

attribute ("field")

method

 (static or instance)

constant

(static final attribute)

interface (more advanced)

???

Date

System

System.nanoTime()

System.out

System.out.println()

double

Double

"Hello nerd".length()

java.lang.Double.MAX_VALUE

Comparable

java.util

java.util.ArrayList

java.util.List

Packages

 Java uses packages to organize classes.

 Packages reduce size of name space and avoid name
conflicts (two classes with same name)

Example: there are 2 Date classes.

java.util.Date "Date" class in java.util

java.sql.Date "Date" class in java.sql

To use the Date from java.utll package, write:

import java.util.Date;

Core Packages

java.lang Java language core classes.
Object, String, System,
Integer, Double, Math, Thread

java compiler always imports this package,
so you don't need to.

java.io

(java.nio)
Classes for input and output

InputStream, BufferedReader,
File, OutputStream

java.util collections, utilities, old Date/Time classes

Calendar, Date,
List, ArrayList, Set,
Arrays, Formatter, Scanner

java.time LocalDate LocalTime Period ...

Importing classes

Write "import" statements at top of file, after the
"package" statement (if you have one).

package coinpurse;

import java.util.Scanner;

import java.util.List;

/**

 * User interface for coin purse.

 */

public class ConsoleDialog {

Scanner console = new Scanner(System.in);

...

imports come after package
statement and before class

Javadoc comment.

What is "import"?

import tells the compiler where to find classes.

It does not actually "import" any code!

package guessinggame;

import java.util.Random;

/**

 * User interface for guessing game.

 */

public class GameDialog {

private Random rand = new Random();

...

tell the compiler where to find
the Random class

Why import?

The reason for "import" to to resolve ambiguity.

Many classes can have the same name.

Java API has 2 classes named "Date".

5 classes & interfaces named "Element".

3 classes named "Timer".

If your program uses a Date, you need import to specify which Date
you want:

import java.util.Date;

class Appointment {

private Date startDate;

Import Everything

You can import everything from a package. Use *

package lazyimport;

import java.util.*;

import java.io.InputStream;

class Person {

private static Scanner console = ...;

private Date birthday;

private List<Person> friends;

...

Ambiguity in import

If a class matches more than one wildcard "*", Java
requires you to resolve the ambiguity using an import
without the wildcard.

Example: There are 2 Date classes: java.util.Date
and java.sql.Date. These imports are ambiguous:

import java.util.*;

import java.sql.*;

/** a class using a Date */

class Ambiguous {

private Date today;
which Date class
should Java use?

Resolving Ambiguity

There are two ways to resolve ambiguity.

1. import a specific class (no wildcard)

2. use the fully qualified name in Java code

import java.util.*;

import java.sql.*;

import java.util.Date; // Solution #1

class Ambiguous {

private Date today = new Date();

 // Solution #2: include full path

private java.sql.Date mdate

= new java.sql.Date();

Packaging and Commenting Code

package coinpurse;

/**

 * Coin represents money with an integer value.

 * @author Bill Gates

 */

public class Coin {

private int value;

 /**

 * Initialize a new coin object.

 * @param value is the value of the coin

 */

public Coin(int value) {

this.value = value;

}

Summary (1)

 A compiler translates Java source code into a form that
can be run.

 An object-oriented program consists of classes.

 Classes can contain:

attributes of objects -- things an object knows

methods -- behavior of objects

constructor -- initializes data of a new object

static methods -- services provided by the class

static variables -- things known by the class

Summary (2)

 In Java, all code must be part of a class.

 A class begins with the declaration:

public class SomeClassName

followed by the class definition inside { ... }

 "public" means that this class is visible to other classes.

 Inside a class, code is contained in methods.

 This main method is where program execution begins.
The main method must have this header line:

public static void main(String [] args)

Summary (3)

 A class defines a kind of object, like Actor or Crab.

 The methods of a class contain the logic for how an
object behaves (written in Java).

 A method can call other methods in the same object,
e.g. act() calls move().

 A method can call methods of other objects, e.g.
atWorldEdge() calls world.getWidth().

General Class Structure

package greeting;
import java.util.Scanner;
import java.time.LocalTime;
/** Print an impersonal greeting message
 * @author James Brucker
 */
public class Greeting {
 public static final Strng GREET = "Hello";

private static int counter = 0;
 /** instance variable */
 private String name;
 /** constructor for new objects
 * @param name is person to greet
 */

public Greeting (String name) {
 this.name = name;
 }

public void greet() {
 System.out.println(GREET + name);

1. package name (optional)

2. import statement(s) - may have
many.

3. Javadoc comment for class

4. Start of the class

Contents of Class:

1. define constants first

2. static variables

3. instance variables

4. constructor(s) - optional

5. methods

6. private methods

method names: camelCase

Question: why { ... } ?

public void sayHello(String who) {

System.out.println("Hello "+who);

}

Why?

Why do we have to write { and } around the
method instructions?

Why?

How to convert number to String?

How to convert a number n to a String?

int n = 100;

String s = n; // error: must convert to string

// At least 4 possible solutions:

String s1 =

String s2 =

String s3 =

String s4 =

How to convert a number to String?

How to convert a number n to a String?

int n = 100;

String s = n; // ERROR: must convert to string

// At least 4 solutions:

String s1 = Integer.toString(n);

String s2 = "" + n;

String s3 = String.valueOf(n);

String s4 = String.format("%d", n);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

