

Arithmetic, Assignment,
and Type Compatibility

Introduction to arithmetic, assignment, and type
conversion rules for Java primitive data types

James Brucker

Arithmetic Operators

Arithmetic operators:
-b Negation
a * b Multiplication
a / b Division.
a % b Remainder of a / b, may be negative
a + b Addition
a - b Subtraction
a + b * c Multiplication then addition

Example: 12 % 5 is 2, 13 % 5 is 3, -12 % 5 is -2,
 2 % 5 is 2, 0 % 5 is 0, 20 % 5 is 0.

Arithmetic Using Integers
 These operations apply to integer data, including "int"

and "long" types.

Expression
int a = 7;
int b = 10;
a + b
a - b
a * b
a / b
b / a
a % b
b % a
a / b * b
b / a * a

Result

 17
 -3
 70
 0
 1
 7
 3
 0
 7

Expression
int c =-12;
int d = 7;
c + d
d - c
c * d
c / d
d / c
c % d
d % c
a + b - c / d
a - b * c + d

Result

 -5
 19
 -84
 -1
 0
 -5
 7
 18
 ??

Order of Arithmetic Operations

(a op b) expression in parenthesis is performed first,

 -a negation is done next,

* / % are done next, left-to-right,

+ - are done next, left-to-right.

a = 12; b = 6; c = 3;

x = a + b / 2 * c;

y = a + b / (2 * c);

z = (a + b) / (2 * c);

a = 3

x = 12 + (6/2)*3 = 21

y = 12 + 6 / (2*3) = 13

z = (12 + 6)/(2*3) = 3

a = 3;

x = 4 + 2 * 9 / 6 / a - 1;

y = 2 + 12 * 2 / 6 % a - 1;

a = 3

x = 4 + (18/6)/3 - 1 = 4

y = 2 + (24/6)%3 - 1 = 3

Quiz on Order of Operations

What are the resulting values for the following?

a = 4; b = 12; c = 4; d = 2;

n1 = a + b * c + d;

n2 = a + b * (c + d);

n3 = b / a * c / d;

n4 = b / a + c / d;

n5 = -a + 15 % c - d;

n1 =

n2 =

n3 =

n4 =

n5 =

Type of Results

What is data type of the result of an operation?

Examples: what is...

15 * 200 = 3000 (int)

15F * 200F = 3000F (float)

0.5 * 7.0 = 3.5 (double)

7 / 2 = 3 (int) ... NOT 3.5

Rule: For primitive numeric types, the result of + - * / % is the same type!

a b a op b - a

int int int int

long long long long

float float float float

double double double double

How is Arithmetic Done?

QUESTION:

 Does the CPU have hardware instructions for + - * /
involving integer data, or does it use software?

 Does the CPU have hardware instructions for + - * /
involving float point data?

 What is the name of the CPU component that performs
+ - * / ?

int

int

MULT resultis multiplication done using
hardware or software?

Arithmetic and Type Conversion

The BIG Question:

The CPU can't directly add int + double or int * double,
because they are different types.

 So, what does Java do when we write 2 + 0.5 or 1.1 * 8 ?

 What is the data type of the result?

int

double

ADD result?

int

double

MULT result?

Arithmetic and Type Conversion (1)

 Operations are defined for each data type
 When Java performs arithmetic (+ - * / %) on two

values, both values must be the same data type.

a op b.

Example Data Types Result

 4 + 1000L int + long ?

 5 * 0.1F int * float ?

 2.5 * 0.8F double * float ?

 '4' + 100 char + int ?

a and b must be same data type

operation on mixed types
is not defined.

Type Promotion

 If a and b are different types, Java will try to promote
one of the values to make them the same type

Example Data Types Promotion Result

 4 + 1000L int + long promote 4 to long 4L+1000L

 5 * 0.1F int * float promote 5 to float 5.0F * 0.1F

 2.5 * 0.8F double * float promote 0.8F to double 2.5 * 0.8

 '4' + 100 char + int promote char to int 52 + 100

Don't do this! The int value of '4' (char) is 52.

Automatic Type Promotion

1. to perform arithmetic, Java always promotes byte
and short values to "int".

short a = 100;
byte b = 50;
a + b result is (int) 150
a * a result is (int)

2. In other cases, Java performs a "widening"
conversion. (see next slide)

Why use int?
The ALU in most
CPUs is designed

for 32-bit
or 64-bit data.

List of Automatic Promotions

Rules

The "higher" types can store any value that was
stored in the lower types. But...

There are some loss of precision in these cases:
int -> float
long -> float
long -> double

Conversion byte -> char, char -> int is mostly for
I/O involving character data. Be careful!

double

float

long

int

short,char

byte
Widening Conversions

These promotions are called widening
conversions because the higher data types have
larger ("wider") range of possible values.

Automatic Conversions

The widening conversions are easy to remember if you
remember the size & range of each data type:

Data Type Size in Memory Range of Values
byte 1 byte -128 to 127
short 2 bytes -32,768 to 32,767
intint 4 bytes -2,147,483,648 to

 2,147,483,647
long 8 bytes -9,223,372,036,854,775,808L

 9,223,372,036,854,775,807L
float 4 bytes ±3,402823E+38
doubledouble 8 bytes ±1.797693134623157E+38

More Type Promotion

1. If one argument is integer ("int" or "long") and the
other is "float" then integer is promoted to "float"
50 * 2.5f result is (float) 125.0f
2.98E-5 * 1000L result is (double) 0.029800...

2. if either operand is "double", then the other operand is
converted to "double" and the result "double"

double x = 0.25;

8 * x result is (double) 2.0
x * 0.5f result is (double) 0.125
1 / 2 * x result is (double) 0.0 Why?
x * 1 / 2 result is (double) 0.125 Why?

Assignment and Type Compatibility

 When assigning a value to a variable (a = 2*b + c), the
left side must be type compatible with the right side.

 An assignment that requires a widening conversion (type
promotion) is considered type compatible.

Example:

short a = 100;

int b = 1000;

float x = 2E+30;

b = a;

x = a;

a = b;

b = x;

no problem: b can store any "short" value

no problem: x has store any "short" value

error! a is too small to store all "int" values

error! b cannot store some large "float"
values

Memory:

a

Variables:

b

100

x expmantissa

Automatic Conversions (2)

Value Can be converted and assigned to:
byte short, int, long, float, double
short int, long, float, double
int long, float, double
long float, double
float double

byte

short

int

long

Integer Data Types and Memory

float

double

Floating Point Data Types

exponentsign & mantissa

Examples

int ax = 100;

float fx;

double dx;

fx = 2;

fx = 2.0;

ax = fx;

dx = ax;

dx = 0.5F * ax;

ax = 0.5 * 100;

OK. Convert 2 to 2.0F (float) then assign to fx.

Error: 2.0 is a double. Can't assign to float fx.

Error. can't assign a float in an int variable.

OK. Promote value of ax to double, then assign.

OK. Promote ax to float, then multiply (float),
then promote result to a double and assign.

Error. Promote 100 to double (0.5 is double) then
multiply. But can't assign the result (double) to
int variable ax.

The Type of Numeric Literals

Value Is Automatically of Type:
0 1 -8000 123456789 int

0L 1L -8000L 123456789L long

0. 2.5 2.98E+8 -1E-14 double

0F 2.5F 2.98E+8F -1E-14F float

2.5L Error: incompatible

The "default double" is one of Java's most annoying "features".

float x, y;

x = 100; // OK. Integer 100 can be converted to "float"

y = 0.5 * x; // Error! "0.5" is a double, so the result is a double

y = 0.5F * x;// OK. Both operands are float, so result is float

Examples

Expression
15 / 2
15 / 2.0F
15 / 2.0
int VAT = 7; // tax rate
5000 * (1 + VAT/100)
5000 * (1 + VAT/100.)
int a; float x; double d;
x = 3.14159;
a = 2.5F * x;
d = 123456789011121314L;
a = Math.sqrt(2);

Result
7 (int)
7.5F (float)
7.5 (double!)

5000 (no tax!)
5350. (tax)
 0
Error: float <-- double
Error: int <-- float
OK: double <-- long
Error: int <-- double

"L" denotes a "long" constant

Common Errors

double x;

x = 1 / 2;

out.println(x);

Bug: 1 and 2 are "int", so integer arithmetic is used.

Output is 0

1. Create a double variable with value 1/2.

int sum = 90;

int part;

part = (1/3) * sum;

out.println(part);

Bug: 1 and 3 are "int", so integer arithmetic is used.

Output is 0

2. Compute 1/3 of the sum

How to Fix these Common Errors

double x;

x = 1.0 / 2.0;

out.println(x);

Fixed: 1 and 2 are double. Easier: x = 0.5.

Output value is 0.5

1. Create a double variable with value 1/2.

int sum = 90;

int part;

part = sum / 3;

out.println(part);

Fixed: use data type of sum for arithmetic.

Output value is 30

2. Compute 1/3 of the sum (sum can be int, float, ...).

Example: Area of a Circle

Problem:

given the radius of a circle, find its area.

Algorithm for Solution:

1. Read the radius from the input

2. Compute area using A =  * r2

3. Display the result.

Project budget:
 Development: 1 day (including testing!)
 Training the user: 0.5 day
 Budget: 15,000 Baht

import java.util.Scanner;
/**
 * Compute the area of a circle
 */
public class Circle {
 public static void main(String [] args) {
 Scanner console =

 new Scanner(System.in);
 System.out.print("Input radius of circle: ");
 double radius = scan.nextDouble();
 double area = Math.PI * radius * radius;
 System.out.println("The radius is "+radius);
 System.out.println("The area is "+area);
 }
}

Example: Area of Circle

Java classes are grouped into
"packages" to help organize.

This import says "Scanner" is in
package java.util.

Name of this class is Circle.
The filename must be
Circle.java

Increment/Decrement Operators

Java has increment and decrement operators:

x++ use the value of x, then add 1

++x add 1 to x, then use the value

x-- use the value of x, then subtract 1

--x subtract 1 from x, then use the value

int x = 10;
int w, y, z;
w = x++; // now w = 10 and x = 11
y = 2 * ++x; // increment x, then use: y = 2 * 12 = 24
x++; // can increment x as a statement by itself!

Examples:

Increment: nickels++

nickels++ means give me another nickel!

(1) return the current value of nickels

(2) then, add one to the value

Increment/Decrement Operators (2)

Often used to increment a loop index or keep a count,
like this:

int count = 1;
while (count < 4) {
 System.out.println("count = " + count);
 count++;
}
System.out.println("Done. count = "+count);

count = 1
count = 2
count = 3
Done. count = 4

Increment/Decrement Operators (3)

Increment is also used in counting things, like this:

// read numbers and compute the average
int count = 0;
long sum = 0;
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextInt()) {

sum = sum + scanner.nextInt();
count++;

}
double average = ((double)sum)/count;
System.out.println("The average is "+average);

Input some numbers: 10 15 20 25
The average is 17.5

What are the results?

x = y = 5;

n1 = x++ * y--;

n2 = ++x * y--;

n3 = x++ * --y;

n4 = ++x * --y;

a = 5;

k1 = a++;

k2 = ++a;

What are the values of
a, k1, k2 ?

What are the values of
n1, n2, n3, n4 ?

Compound Assignment Operators

Combine an operation and assignment.

Expression Meaning

sum += x; sum = sum + x;

sum -= x; sum = sum - x;

prod *= x; prod = prod * x;

prod /= x; prod = prod / x;

prod %= x; prod = prod % x;

Assignment operators were introduced in the C language,
to help the compiler create more efficient machine code.
Efficiency is also the reason for the n++ and n-- syntax.

Compound Assignment Example

The previous summation example could be rewritten as:

// read numbers and compute the average
int count = 0;
long sum = 0;
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextInt()) {

sum += scanner.nextInt();
count++;

}
double avarage = ((double)sum)/count;
System.out.println("The average is "+ average);

Input some numbers: 20 30 10 80
The average is 35.0

Operator Precedence (order)

Operations are performed in this order (top to bottom):

Operator Associativity
[], (...), method(...) left to right
 ! ~ ++ -- +a -a (cast) right to left
* / % left to right
+ - left to right
< <= > >= instanceof left to right
== != left to right
& (bitwise and) left to right
^ (bitwise xor) left to right
| (bitwise or) left to right
&& (boolean and) left to right
|| (boolean or) left to right
= += -= *= /= %= right to left

Quiz: Operator Precedence

What are the resulting values for the following?

double a = 24, b = 12, c = 4, d = 2;

x1 = a + b / c * d

x2 = a / b / c / d;

x3 = b / a * c / d;

x4 = b / a + c / d;

x5 = (a++ - -b) / 2*c;

x6 = 2*++b;

x1 =

x2 =

x3 =

x4 =

x5 =

x6 =

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

