

Conditional Execution Using if

If you come to a fork in the road,

take it.

-- Yogi Berra

Conditional Statements

A conditional statement is one that may (or may not) be
executed based on a condition.

Example:

if it is raining then I will study,

else I will go to the beach.

(it is raining) is the condition.

A condition is something that has a value of true or false
(boolean).

Compound Conditional Statements

Conditional statements can be combined to form a compound
conditional statement.

Example:

if it is raining then I will study,

else if it is cloudy then I will clean the yard,

else I will go to the beach.

Conditional Statement to Computer Code

Conditional statements are a key to writing useful computer
programs. To express in computer code:

English:

if it is raining then I will study,

else I will go to the beach.

Program:

if (is_raining) study ;

else goToTheBeach ;

is_raining is a boolean condition.

study and goToTheBeach are statements or actions.

Syntax of a Conditional Statement

The Java (or C/C++/C#) syntax for a conditional statement is:

Syntax:

if (test_condition) statement1 ;

else statement2 ;

test_condition is anything that has a value of true or false

statement1 is the action to perform if the test is true.

statement2 is the action to perform if the test is false.

statement1 and statement2 can be any legal statements.

NOTE: Java does not use the word "then".

How Do I Write A Test Condition?

To use conditional statements, you must know how to write a
test condition. Here are a few examples. Details later.

Simple tests:

x > 0

choice == 1

scanner.hasNext() /* true if more input */

Compound tests:

x > 0 && x < 10 /* x > 0 and x < 10 */

choice == 1 || choice == 2 /* choice 1 or 2 */

Example Statements

If x is positive then add it to the score:

If the score is more than 60, print "pass" else print "fail".

if (score > 60) System.out.println("pass”);

else System.out.println("fail”);

Must use semi-colons!

if (x > 0) score = score + x;

Flow Charts

A flow chart can be useful to show conditional logic. Here’s
an example:

Go to Beach Study

Raining? False True

 Start

Flow Chart Symbols

sum = x + y;

sum > 0 ?

read x

Process -- operations

Condition

Input/Output

Flow line

Connector

Terminatorreturn 0;

if … [then] … else ...

 if (condition) statement; // Java/C/Python do not
 if (condition) statement; // use the word “then”

else statement;

if (x > 0) sum += x; // sum positive values

if (x > 0) sum += x; // sum positive values

else System.err.println("Sorry, x must be postive");

2. If x is positive then add to sum, else warn the user:

1. "if" without any "else" clause:

if With More Than One Action

An "if" statement can have more than one action:

English:

if it is raining then I will study,

 and then watch T.V.,

else I will go to the beach.

Program:

if (is_raining) {

 study;

 watchTV;

}

else goToTheBeach ;

Braces { ... } enclose a
statement block. You can
use a statement block
instead of a statement.

Syntax of if With Block

if (n > 0) {

}
else {

}

statements to perform
when n > 0

statements to perform
when !(n > 0)

Multiple Action Example

English:

if score is positive then

 add score to the total

 increase count by 1

else
 display error message

Program:

if (score > 0) {

total = total + score; // add to the total score

count++; // add 1 to counter

} else System.out.println("invalid score: ”+score);

Compound Conditional Statements

A compound conditional statement has many branches.

English:

if it is raining then I will study,

else if it is cloudy then I will clean the yard,

else I will go to the beach.

Program:

if (is_raining) then study ;

else if (is_cloudy) then cleanTheYard ;

else goToTheBeach ;

Compound Conditional Example

A compound conditional statement has many branches.

English:

if score is more than 70 then pass,

else if score is more than 60 then try again,

else fail

Program:

if (score > 70) System.out.println("pass”);

else if (score > 60) System.out.println("try again”);

else System.out.println("fail”);

Nested if Statement

% roll two dice
int die1 = rollDice(); // = 1 ... 6
int die2 = rollDice(); // = 1 ... 6
if (die1 + die2 == 11)

System.out.println("You win!");
else

if (die1 == 6)
if (die2 == 6)
 System.out.println("Two 6es. Roll again.");

else
System.out.println("You lose.");

Roll: 6 5 Output:
Roll: 6 6 Output:
Roll: 6 3 Output:
Roll: 3 6 Output:

What will be output for each case?

Nested if Statement: dangling else

% roll two dice
int die1 = rollDice();
int die2 = rollDice();
if (die1 + die2 == 11)

System.out.println("You win!");
else

if (die1 == 6)
if (die2 == 6)
 System.out.println("Two 6es. Roll again.");

else
System.out.println("You lose.");

Roll: 6 5 Output: You win!
Roll: 6 6 Output: Two 6es. Roll again.
Roll: 6 3 Output: You lose.
Roll: 3 6 Output: (no output)

An "else" clause pairs with the nearest
unmatched "if" at the same block level.

Avoiding dangling else confusion

% roll two dice
int die1 = rollDice();
int die2 = rollDice();
if (die1 + die2 == 11)

System.out.println("You win!");
else if (die1 == 6) {

if (die2 == 6)
 System.out.println("Two 6es. Roll again.");

else
System.out.println("You lose.");

}
This clarifies the logic,
but is not really what we want.

 enclose the nested "if" in a { ... } block,

Avoiding dangling else confusion

% roll two dice
int die1 = rollDice();
int die2 = rollDice();
if (die1 + die2 == 11)

System.out.println("You win!");
else if (die1 == 6 && die2 == 6)

System.out.println("Two 6es. Roll again.");
else

System.out.println("You lose.");

Much clearer -- every case has an action.

 enclose nested "if" in a { ... } block, or
 structure the nested "if" as an if ... else if ... else .

Relational operators

These relations return a value of true or false (boolean):

x == y equality, must use 2 “=“ signs

x != y not equal

 x > y greater than, greater than or equal

x >= y greater than, greater than or equal

 x < y less than

x <= y less than or equal

if (total > 90) grade = "A";

else if (total > 80) grade = "B";

else grade = "U"; // unsatisfactory

if (total >= 90) grade = "A";

else if (total >= 80) grade = "B";

else grade = "U";

What is your grade if your total score is 90? 80? 79?

Logical Operators and Compound Tests

expr1 && expr2 logical “and”. expr2 is only evaluated

if expr1 is true! (If expr1 is false, then

the result is false.)

expr1 || expr2 logical “or”. expr2 is only evaluated

if expr1 is false! (If expr1 is true,

then the result is true.)

! expr1 negate expr1. True if expr1 is false.

% comment on test score

if (score > 90) comment = “excellent”;

else if (score > 70 && score <= 8 0) comment = “good”;

else if (score <= 70) comment = “you party too much”;

Compound Tests to Avoid Errors

What if y = 0 ? Division by zero will cause this program
to fail. Solutions:

if (x/y < 0.1) System.out.println(“x/y is too small”);

if (y != 0) if (x/y < 0.1) System.out.println(“too small”);

Test y first. Test x/y only if y is not zero.

if (y != 0 && x/y < 0.1) System.out.println(“too small”);

Same thing! Compiler knows that if first test is false,
then the "and" condition is false. Skips second test.

True or False?

int n = 5, m = 10;

boolean answer1, answer2, answer3;

if (n+m > 12 && n*m < 50) answer1 = true;

if (n+m > 12 | | n*m < 50) answer2 = true;

if (! (n+m > 12 && n*m < 50)) answer3 = true;

String s = new String(“Hello there”);

String t = "Hello " + "there";

boolean answer1 = (s == t);

boolean answer2 = (s < t);

boolean answer3 = s.equals(t);

(condition) ? expression1 : expression2

An inline version of “if … else ...”.
The only ternary (3 argument) operator in Java. The usage is:

String grade;

grade = (score > 60) ? “pass” : “fail”;

condition to test do this if true do this if false

// is the same as this…

if (score > 60) grade = “pass”;

else grade = “fail” ;

Conditional Examples

// Compute quotient = numerator / denom.
// Avoid dividing by zero in case denom == 0
quotient = numerator / (denom != 0) ? denom : 1 ;

// Announce new mail
int numMessages = getNewMail();
System.out.println("You have " + numMessages

+ " new " +
 (numMessages == 1 ? "message" : "messages"));

You have 1 new message if numMessages == 1

You have 3 new messages any other value

Examples

Compound if ... else ... (1)

Assign a grade using the variable score as follows:
grade = "A" if score >= 90

"B" if 80 <= score < 90
"C" if 65 <= score < 80
"D" if 50 <= score < 65
"F" if score < 50

int score = scanner.nextInt(); // read score
String grade;
... write your code here ...

Compound if ... else ... (2)

Inefficient solution:

if (score >= 90) grade = "A";
else if (score >= 80 && score < 90) grade = "B";
else if (score >= 65 && score < 80) grade = "C";
else if (score >= 50 && score < 65) grade = "D";
else grade = "F";

Reason: duplicate tests waste time.

Compound if ... else ... (3)

Efficient solution:

if (score >= 90) grade = "A";
else if (score >= 80) grade = "B";
else if (score >= 65) grade = "C";
else if (score >= 50) grade = "D";
else grade = "F";

Reason: no duplicate tests.
"if" succeeds quickly for cases with score > 80, avoiding
many tests.

Compound if ... else ... (4)

Efficient solution for a bad class:

if (score < 50) grade = "F";
else if (score < 65) grade = "D";
else if (score < 80) grade = "C";
else if (score < 90) grade = "B";
else grade = "A";

This is efficient if you a bad class (most scores < 65),
because it will succeed for bad scores first. If you have a
good class (most scores >= 80) then the previous slide is
more efficient.

Early return from a method (1)

In a program, this task would probably be placed in a method.

private String computeGrade(int score) {
String grade;
if (score >= 90) grade = "A";
else if (score >= 80) grade = "B";
else if (score >= 65) grade = "C";
else if (score >= 50) grade = "D";
else grade = "F";
return grade;

}

Q: Can you write without using a compound "if" and "grade"?

Early return from a method (2)

Return from the method as soon as grade is known:

private String computeGrade(int score) {
if (score >= 90) return "A";
else if (score >= 80) return "B";
else if (score >= 65) return "C";
else if (score >= 50) return "D";
else return "F";

}

That eliminates useless assignment to local variable "grade".
Can you eliminate the compound "if" statement?

Early return from a method (3)

Previous side is the same as this:

private String computeGrade(int score) {
if (score >= 90) return "A";
if (score >= 80) return "B";
if (score >= 65) return "C";
if (score >= 50) return "D";
return "F";

}

A compiler will usually produce the same code as in the
previous slide, so use whichever form you like best.
(I like the previous one because it shows logical structure;
some people like this form for simplicity.)

Construct Conditional from Flow Chart

div = x ;

div = x / y ;

y == 0

x >= 0

noyes

div = -x ;

no yes

write Java code

to implement this

flow chart

Construct Conditional from Flow Chart

div = x ;

div = x / y ;

y == 0

x >= 0

noyes

div = -x ;

no yes

if (y != 0) div = x/y;

else if (x >= 0)

div = x;

else div = -x;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

