

Loops

while, do ... while, for loops

and how to use them

by James Brucker

Syntax of three loop statements

while (boolean_expression) statement;

The statement can be null, but semi-colon is required.

For example:
/* skip blanks */

while ((c = (char)System.in.read()) == ' ') ;

do statement; while (boolean_expression);

for (initializer ; boolean_expr ; increment) statement;

Loops containing a single statement:

assigment and boolean expression

Syntax of three loop statements

while (boolean_expression) { [statement;] ... }

Each statement ends with a semi-colon,
but no semi-colon after the block.

/* skip blanks */

do { c = (char) System.in.read();

 } while (c == ' ') ;

do { [statement;] ... } while (boolean_expression);

for (initializer ; boolean_expr ; increment) {

[statement;] ... }

Loops containing a statement block:

Repetition (loops) in Programs

Repetition (loop) is used a lot in computer programs.

Usually, repetition is used in computer programs like this:

Initialization Part
initialize data, open file,

ask user for input, ...

Loop Part
repeat operations in a loop

Conclusion Part
compute results, show

results or return a value

long sum = 0;
Scanner input =
new Scanner(System.in);

while (input.hasNext())
 sum = sum +

input.nextInt();

// results
System.out.println(

"the sum is "+ sum);

Designing Repetition in Programs

You should think about these three activities when you
write loops in your programs:

1. Initialization Part
what must be done first?
define and initialize variables, open files, print a prompt ...

2. Loop Part
repeat some actions until we are finished.
each time, test a condition to decide whether we are finished

3. Conclusion Part
process the results of the loop
print results or set attributes of an object or return results

while loop

English:

while more homework problems

read the next problem

solve it

Program:

while (moreHomework()) {

getNextProbem();

solveProblem();

}

// wasn't that easy?

while Loops for Reading Input

Three common approaches to reading input data:
 exhaustive:

read all the data until end of file or input stream
 sentinel controlled:

read data until you see a special value,
called a sentinel

 counter controlled:
read a count of expected number of data items,
then read exactly that many items

Q: which approach is used in the Programming Skills Lab ?

Reading input: exhaustive

How do you know when all the data has been read?
 Scanner: hasNext() method
 BufferedReader: returns null
 InputStreamReader: returns -1
 DataInputStream: throws EOFException

DataInputStream reads binary data, so it can't use -1
or null to indicate EOF because those could be
legitimate data values!

How To Find This Information?

How do you know what an input method does when EOF is found?
The details are stated in the Java API for each class that reads input.

Exhaustive Input Loop
Problem:

Read integers from the input and sum them.

English:

while there is more input

read the next number

add it to the sum

Program:

Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
while (input.hasNext()) {

int data = input.nextInt();
sum = sum + data;

}

Exhaustive Input Loop (2)

Details for the careful programmer:

(1) eliminate the temporary variable "n"

(2) catch input errors

Program:

Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
try {

while (input.hasNext())
sum += input.nextInt();

} catch (InputMismatchException e) {
// control comes here if an exception
System.err.println("Read error: "+e);

}

Exhaustive Input Loop (3)

sum = 0;

hasNext() ?

data = nextInt();
sum += data;

true

false

body of
loop

Scanner input =
 new Scanner(System.in);
long sum = 0; // initialize
while (input.hasNext()) {
int data = input.NextInt();
sum = sum + data;

}
// Now sum = sum of all the
// input values

next statement after loop

Counter Controlled Input

Problem:

Read the number of expected values.

Read the expected amount of data and sum.

English:

read the counter value

while counter is greater than 0

read the next number

add number to the sum

decrease the counter by 1

Program:

next slide

5

20 -99

12345678

0

44444

counter

Counter Controlled Input (2)
Program:

Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
int count = input.nextInt();
while (count > 0) {

int data = input.nextInt();
sum = sum + data;
count = count - 1;

}
// now sum = sum of the input values

Details for the careful programmer:

1. what could go wrong here?

2. how can you handle it?

Counter Controlled Input (3)
Details for the careful programmer:

 1. there may be less data than we expect

 2. there may be invalid counter or invalid data

Program with Error Checking:

Scanner input = new Scanner(System.in);
int count = 0, sum = 0; // initialize
try {

count = input.nextInt();
while (count > 0) {

sum += input.getNextInt();
count--; // same as count = count -1

}
} catch (Exception e) {

System.err.println("Exception "+e +
"\nafter reading "+ count +" values.");

}

Counter Controlled Input (4)
Details for the careful programmer:

 instead of Exception you can use hasNextInt()

Program with Error Checking:

Scanner input = new Scanner(System.in);
int count = 0, sum = 0; // initialize
if (input.hasNextInt())

count = input.nextInt();
// test for more data AND counter
while (count > 0 && input.hasNextInt()) {

sum += input.getNextInt();
count--;

}
// now sum = sum of input values
System.out.println("The sum is "+sum);

Counter Controlled Input (4)
A Better Way:

How can we save the number of items actually read? For example, to
compute the average = sum/count

Scanner input = new Scanner(System.in);
long sum = 0; // sum of the data
int count = 0; // number of items read
int expect = input.nextInt();
while (count < expect) {

int data = input.nextInt();
sum = sum + data;
count = count + 1;

}
// count = number of items actually read
if (count > 0) average = sum/count ;

Counter Controlled Input (5)

sum = count = 0;

read expect;

count < expect
?

read x
sum = sum + x
count++;

true

false

body of
loop

Scanner input =
 new Scanner(System.in);
long sum = 0; // sum of data
int count = 0; // number read
int expect= input.nextInt();
while (count < expect) {
int x = input.nextInt();
sum = sum + x;
count++;

}
// sum = total of the inputs
// count = number of values
if (count > 0)
average = sum / count ;

Sentinel Controlled Input

Problem:

Read data from the input and sum values.
Stop when a special "sentinel" value is found

English:

set counter and sum to zero.

read first data value

while value not equal to sentinel

add value to the sum

increase the counter by 1

get the next value

Example:

next slide

20 45

123

0

444

-999999

23456

not read
sentinel

Sentinel Controlled Input (2)

Example:

read the first value: value = 20

loop: if (value == sentinel) then stop (false)
add value to sum: sum = 0 + 20

read the next value: value = 45

loop: if (value == sentinel) then stop (false)

add value to sum: sum = 20 + 45 = 65

read the next value: value = 123

loop: if (value == sentinel) then stop (false)

add value to sum: sum = 65 + 123 = 188

read the next value: value = 0

20 45

123

0

444

-999999

23456

not read
sentinel

Sentinel Controlled Input (3)

Example:

loop: if (value == sentinel) then stop (false)
add value to sum: sum = 188 + 0 = 188

read the next value: value = 444

loop: if (value == sentinel) then stop (false)

add value to sum: sum = 188 + 44 = 232

read the next value: value = -999999

loop: if (value == sentinel) then stop (TRUE)

finish: print the sum

sum = 232

20 45

123

0

444

-999999

23456

not read
sentinel

Sentinel Controlled Input (2)
Program:

final static int SENTINEL = -999999;
Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
int count = 0; // count of data read
int data = input.nextInt(); // first value
while (data != SENTINEL) {

sum = sum + data;
count++;
data = input.nextInt(); // next value

}
// now sum = sum of the input values

Details: this code is slightly inefficient: duplicate input.

Sentinel Controlled Input (3)
Use a "do ... while" loop to eliminate duplication:

final static int SENTINEL = -999999;
Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
int count = 0; // count of data read
do {

data = input.nextInt(); // next value
if (data != SENTINEL) {
sum = sum + data;
count++;

}
} while (data != SENTINEL)

Details: still slightly inefficient: duplicate test for sentinel,
no test for end of data.

Sentinel Controlled Input (4)
Use "break" to exit the loop:

final static int SENTINEL = -999999;
Scanner input = new Scanner(System.in);
long sum = 0; // initialize the sum
int count = 0; // count of data read

while (input.hasNext()) { // test
data = input.nextInt(); // next value
if (data == SENTINEL) break;
sum = sum + data;
count++;

}
// now sum = sum of the input values

Details: could use "hasNextInt()" instead of "hasNext()".

break = exit the loop

Application of Sentinel Approach

Common Use:

Interactive applications: ask user a question and
continue until he inputs a "quit" value.

Scanner input = new Scanner(System.in);
do {

System.out.print("Choose option (0 to quit):");
int option = input.nextInt();
if (option != 0) processOption(option);

while (option != 0);

Application of Sentinel Approach

Problems with Sentinel Approach for Data:

1. must be careful that real data cannot equal sentinel!

2. must still test for EOF -- what if user forgets sentinel or
mistypes it?

BufferedReader br = new BufferedReader(...);
String line;
while ((line = br.readLine()) != null) {

if (check_for_sentinel_value) break;
process input line;

}

Other while loop applications

// Find the Greatest Common Divisor of
// two integers. Example: gcd(30,72) = 6
public static int gcd(int a, int b) {
a = Math.abs(a); // must be >= 0
while (b != 0) {
int remainder = a % b;
a = b;
b = remainder;
}
return a;

}

The applications are endless! For example:
 searching a list while a desired value is not found
 repeat a calculation until the desired accuracy is achieved
 move on a chess board while there are vacant squares

Find the minimum and maximum value

Find the minimum and maximum of the input data.

// find the minimum and maximum of input data
float min, max, x;
// scanner object for reading the input
Scanner input = new Scanner(System.in);
x = input.nextFloat(); // read first value
min = max = x;
while (input.hasNext()) {

x = input.nextFloat;
if (x > max) max = x;
else if (x < min) min = x;

}
System.out.printf("min = %f max = %f",min,max);

do ... while loop

English:

do

make next move

while game is not finished

Program:

do {

nextMove()

} while (! gameOver())

do ... while with Input

Problem:

Pick a number at random.

Ask the user to guess until he guesses right.

English:

choose a random integer 0 to some max value

explain the game to user

do

prompt for user

read guess

evaluate guess and print the result

while guess is not correct

Guessing Game
Program:

final int MAX = 20;
final int SECRET = (int)(MAX * Math.random());
System.out.printf(

"Guess a number between 1 and %d\n", MAX);
int guess = 0;
do {

System.out.print("Your guess: ");
guess = input.nextInt();
if (guess == SECRET)

 System.out.print("right!");
else System.out.println("Wrong. Try again.");

} while (guess != SECRET);

Must end with semi-colon.

do statement while (test_condition);

float sum = 0, x;

int count = 0;

// read 10 number and sum

do {

x = input.nextFloat();

sum += x;

count++;

} while (count < 10);

float average =
sum / count;

/* output the results */

sum = 0;

count = 0;

count < 10 ?

input x
add x to sum
count += 1

yes

no

do statement while (test_condition);

String reply;
do {
PlayGame();
// ask user if wants to play again.
reply = JOptionPane.showInputDialog(
null, "Another game? ");
if (reply == null) break;
} while (! reply.equalsIgnoreCase("no"));
JOptionPane.showMessageDialog(null, “Goodbye”);

do statement while (test) is useful when:
 must execute some statements each time before the test

condition can be performed.
 you want the loop statement to be executed at least once.

Gambling game... a random walk

Here is a game where you win or lose 1 Baht:
 Toss a coin.
 If heads you win 1 Baht, if tails you lose 1 Baht.

If you start with 10 Baht, can you get rich?

How to simulate a coin toss
 Math.random() returns a random number in [0 .. 1)
 each time, the result is different -- try it yourself!
 to simulate a coin toss (1/2 you win, 1/2 you lose) use:
if (Math.random() > 0.50) /* you win 1 Baht */ ;
else /* you lose 1 Baht */ ;

do ... while for Gambling Game

int money = 10; // you start with 10 Baht
double p = 0.50; // probability of a "tail"
do {
// toss the coin. you win if "heads"
if (Math.random() > p) money = money + 1;
else money = money - 1;
System.out.println("you have "+money);
} while (money > 0);

do
toss the coin.
if heads you win 1 Baht, else you lose 1 Baht
display amount of money you have

 while (your money > 0)

for (initial ; test_condition ; increment)
statement ;

int k;

for (k = 0; k < N ; k++) {

// statements go here

}

statement(s) to
execute the first
time only.

condition to test
at top of loop

operation to
perform at
bottom of loop.

k = 0

k < N ?

statements in
loop body

yes

no

k++

for loop examples

for(k = 2; k < 6; k++)
System.out.println("k = "+k);

sum = 0;

for(k = 5; k <= 20; k = k + 5) {

sum = sum + k;

System.out.printf(

"k = %2d sum = %d", k, sum);

}

Here are some simple "for" loops

k = 2

k = 3

k = 4

k = 5

k = 5 sum = 5

k = 10 sum = 15

k = 15 sum = 30

k = 20 sum = 50

for (initial ; test ; increment) statement ;

int k, N;

System.out.print("Please input N:");

N = scanner.nextInt();

for (k = 0; k < N ; k++) {

System.out.println("now k = "+k);

}

System.out.println("done. k = "+k);

The "test" condition is tested at the start of each iteration.

You can verify this using this experiment:

Please input N: 1

now k = 0

done. k = 1

(run program again...)

Please input N: 0

done. k = 0

body of loop is not executed

for (initial ; test ; increment) statement ;

The initial, test, or increment may be omitted.
But you must still include the semi-colons.

int k;
int n = 10;
System.out.print(“What value for start of loop?");
k = scanner.nextInt();

for (; k < N ; k++) {
System.out.printf(“k=%d\n“, k);

}
System.out.println("done");

"for" loop for processing array

A common use of "for" is to process all elements of an
array.

float [] a;
// read the data from somewhere
a = readArrayData(); // returns an array

// sum the values and find the maximum value
float sum = 0;
float max = a[0];
for (int k=0 ; k < a.length; k++) {

sum += a[k];
if (a[k] > max) max = a[k];

}

common "for" loop usage

break - exit a loop

The break statement causes execution to leave the innermost surrounding for,
while, or do...while loop and continue at the next statement after loop.

// average of numbers, stop if sum > 1E6
double sum, x,;
int count = 0;
sum = 0.0;
while (sum < 1.0E6) {

if (! scanner.hasNextDouble()) break;
x = scanner.nextDouble();
sum += x;
count++;

}

break with label - exit any loop

In the case of nested loops, to break out of the outer loop you must use a label. To label a
statement, do this:

label: statement;

// a double loop over an array
final int ROWS = 10, COLS = 20;
double [][] x = new double[ROWS][COLS];
// label the outer loop
ROWLOOP: for (int row=0; row<ROWS; row++) {

for (int col=0; col<COLS; col++) {
if (! scanner.hasNextDouble())

break ROWLOOP;
x[row][col] = scanner.nextDouble();

} // end of "col" loop
} // end of "row" loop

continue - go to next iteration of loop

The continue statement causes execution to skip the remaining statements in a
for, while, or do...while loop and perform the test/increment for next iteration.

int n;
// print numbers 1 .. 20
// except multiples of 4
for (n = 0; n < 20; n++) {

if (n % 4 == 0) continue;
System.out.println(n);

}

1
2
3
5
6
7
9
10
11
13
14

15
17
18
19

continue - go to next iteration of loop

In a while() or do...while() loop,
continue branches to the test
condition. In for(), it branches to
the increment part.

for (initializer ; test_cond ;
increment_operation)

{
body of loop;
if (something) continue;
more statements;

}

initializer

test_cond ?

statement1

true

false

increment

if (...) continue

statement2

Weird "for" loops

Sometmes you will see "for" loops used in unusual ways.

Try to avoid writing loops like this.

for (initial ; ; increment) statement ;

Sometimes the test condition is performed inside the “for”
loop, so you can omit it in the for statement.

int count;
// sum numbers until a zero
// is found
for (count = 0 ; ; count++) {

 x = input.nextInt();
 if (x == 0) break;
 sum += x; count++;

}
System.out.println("Sum is: "+

sum);

break causes the
flow of execution
to leave a for,
while, or
do...while loop
and continue at
first statement
after the loop.

for (initial ; test ;) statement ;

You can omit the increment part of a for statement, but in
that case using a while () ... loop is clearer.

float min, max, x;
// find the minimum and maximum
x = input.nextFloat();
for (min = x, max = x ;

 input.hasNext();
) {

x = input.nextFloat;
if (x > max) max = x;
else if (x < min) min = x;

}

true while there
is more input to
read

initialize both min
and max

no increment
operation

for (initial ; test ;) is same as while

If you omit the increment part of a for statement, then using
a while loop is clearer.

// find the minimum and maximum of input data
float min, max, x;
// scanner object for reading the input
Scanner input = new Scanner(System.in);
x = input.nextFloat(); // read first value
min = max = x;
while (input.hasNext()) {

x = input.nextFloat;
if (x > max) max = x;
else if (x < min) min = x;

}
System.out.printf("min = %f max = %f",min,max);

Any statement can be used in "for(...)"

This works but is hard to read:

double sum, x;
int count = 0;
Scanner in = new Scanner(System.in);

// read numbers until a negative value is found
for (System.out.println("Input numbers: ") ;

in.hasNext() && (x=in.nextInt())>=0 ;
sum += x) count++;

System.out.println("The Sum is: "+ sum);

	Loops
	Syntax of three loop statements
	Slide 3
	Repetition (loops) in Programs
	Designing Repetition in Programs
	while loop
	while Loops for Reading Input
	Reading input: exhaustive
	Exhaustive Input Loop
	Exhaustive Input Loop (2)
	Exhaustive Input Loop (3)
	Counter Controlled Input
	Counter Controlled Input (2)
	Counter Controlled Input (3)
	Counter Controlled Input (4)
	Slide 16
	Counter Controlled Input (5)
	Sentinel Controlled Input
	Sentinel Controlled Input (2)
	Sentinel Controlled Input (3)
	Slide 21
	Slide 22
	Sentinel Controlled Input (4)
	Application of Sentinel Approach
	Slide 25
	Other while loop applications
	Find the minimum and maximum value
	do ... while loop
	do ... while with Input
	Guessing Game
	do statement while (test_condition);
	Slide 32
	Gambling game... a random walk
	do ... while for Gambling Game
	for (initial ; test_condition ; increment) statement ;
	for loop examples
	for (initial ; test ; increment) statement ;
	Slide 38
	"for" loop for processing array
	break - exit a loop
	break with label - exit any loop
	continue - go to next iteration of loop
	Slide 43
	Weird "for" loops
	for (initial ; ; increment) statement ;
	for (initial ; test ;) statement ;
	for (initial ; test ;) is same as while
	Any statement can be used in "for(...)"

