

Methods

James Brucker

What is a Method?

Programming view: a method is a function. It can
return a value or not.

Design view: methods define the behavior of objects.
Methods are the way by which objects communicate

// deposit some money in an account
public void deposit(double amount) {
 balance = balance + amount;
}

Invoking a Method

To invoke the deposit method, you must use it as a
behavior of a BankAccount object.

Example:

BankAccount myAcct = new BankAccount("Ample Rich");
Scanner console = new Scanner(System.in);

// read some deposit data
System.out.print("Enter deposit amount: ");
long amount = console.nextLong();

// method: deposit the money in my account
myAcct.deposit(amount);

deposit instance method of a BankAccount object

Static Methods

 Static method is provided by a class, but not part of any
object.

 Invoke static methods using the class name:

Math.sqrt(25.0) sqrt of the Math class

MyClass.main() main method of a class

Integer.parseInt("123") convert String to int

System.exit(0) exit program.

 Static methods can be used without creating an object from
the class.

 This is why "main" is static.

Meaning of Static Methods

double length = Math.hypot(3.0, 4.0);

int amount = Integer.parseInt("123");

long now = System.currentTimeMillis();

// create a Calendar object using

// the current Locale information

Calendar cal = Calendar.getInstance();

 Most static methods are services provided by a
class.

 Some useful static methods:

Restrictions of Static Methods

 Static methods cannot directly access the instance
attributes (object attributes) or instance methods of a
class.

 Static methods are not polymorphic. You can't
implement polymorphism using a static method.
 Why?

The compiler "binds" the method call to the method
implementation of a particular class at compile time.
[called "static binding"]

main() is a static method

public class Greeter {
/** an instance method */
public String getReply() {

Scanner input = new Scanner(System.in);
return console.nextLine();

}
public static void main(String [] args) {

System.out.print("What's your name? ");
String name = getReply(); // ERROR

 // getReply is not static
}

 main() is a static (class) method. It cannot call an
instance methods unless you create an object first.

Instance Methods

 instance methods are the behavior of objects.

 access using the object name:

"hello there".length() length() of the String class

System.out.printf(...) printf method of "out" object

x.toString() return String form of x

 Instance methods can access the attributes of an
object.

 Instance methods can call static methods.

Instance Methods

 Instance methods have access to an object's attributes
(also called instance variables)

 Instance methods can use the this variable.
this means "this object".

public class BankAccount {

 long balance; // balance is an instance variable

 public BankAccount(long abalance) {

 this.balance = abalance;

 }

 public void deposit(long amount) {

 balance += amount; // same as "this.balance"

 }

Writing a Method

A method consists of these parts.

// return the maximum of 2 double values
public double max (double a, double b) {

if (a > b) return a;
else return b;

}

Access Control:

public
protected

(default)

private

Type of value
returned by this
method. "void" if
nothing is returned.

Parameters
Method

Body, with
returned
value.

Writing a Method (2)

This max method does not access any data other than the
parameters, so we could make it a static method:

// return the maximum of 2 double values
public static double max (double a, double b) {

if (a > b) return a;
else return b;

}

Access Control:
public, protected, private, or default [package access]

Declare a "static" method.

It is part of the class, not connected to any object.

Accessing a Method

 From inside of the class, you can refer to a method using just its
name.

 From outside of the class, you must use a class name (static
methods) or object reference (instance method) to call a method.

public class MyMath {
public static double max(double a, double b)
public static void main(String [] args) {

double x = 10.5;
double y = 10.51;
// call "max" of MyMath class:
double r1 = max(x, y);
// call "max" of Java's Math class:
double r2 = Math.max(x, y);

}

Accessing a Method

 For instance methods, use an object reference to qualify
method access.

public class Bank {
public static void main(String [] args) {

BankAccount a = getAccount("Ample Rich");
BankAccount b = getAccount("Still Poor");
// call "withdraw" of object a:
Money amount = a.withdraw(100000);
// call "deposit" of object b:
b.deposit(amount);

 }

a and b are references to BankAccount objects.

Visibility (Accessibility) of Methods

You control what objects can access an object's
methods.

There are 4 choices:

 private: method can only be invoked by code in this class.

 protected: method can be invoked by other classes in the same
package, or by any subclass of this class.

 public: method can be invoked by any Java program.

 default: can only be invoked by other classes in same package

public void deposit(long amount) {
/* body of the method */

}

Return Value of a Method

class BankAccount {

 public void deposit(long amount) {

 balance += amount;

 }

 public long getBalance() {

 return balance;

}

 A method may return a value. The type of return value
must be declared in the method header.

 A method which doesn't return any value should have
a return type of "void".

 In the method body, use "return <expression>".

void means this method does not
return a value.

Common Method Types

int getValue()

void setValue(int value)

boolean equals(Object other)

int hashCode()

String toString()

int compareTo(MyClass other)

These are examples of common methods.

Constructor

 A constructor is not a method, but the syntax is similar
 A constructor may have parameters.
 A constructor has no return value, not even "void".

public class BankAccount {
public BankAccount() {

balance = 0;
acctName = null;

}
public BankAccount(String name) {

balance = 0;
acctName = name;

}
public void BankAccount(String name, long balance) {

no return value

not a constructor

Review Questions

Identify each method as Static or Instance Method

 console.nextInt(); // console is a Scanner object

 String s = "This is too easy.";

s.length()

 double angle = Math.toRadian(45);

 System.out.println("Print me");

 Double.parseDouble("123.45E-12")

Identify all 3 methods. getTime() returns a Date.

 Calendar.getInstance().getTime().getMonth()

Interpretation of Static Methods

A static method can be:

 a service provided by the class

 a "public utility", like the methods in Math, or

 a way to create objects from the class (or another
class). Useful if creating objects is complex.

 This is called a Factory Method.

// Calendar.getInstance returns a new Calendar object,
// with the default timezone and locale
// getInstance is a Factory Method for the Calendar class.
Calendar date = Calendar.getInstance();

Static and Instance Methods

 What is wrong here?

public class TestProgram {
 public int max(int m, int n) {
 return (m>n)? m : n ;
 }

 public static void main(String [] args) {
 int n = 100;
 int m = 200;
 System.out.println("max of m, n is " +max(m,n));

// ERROR. Why?
 }
}

Static Methods, Instance Variables

 What is wrong here?

public class BankAccount {
long balance;
long accountNumber;
String accountName;
/** next available account number */
static long nextAccountNumber = 1;

pubic static long getNextAccountNumber()

 {
nextAccountNumber++;
accountNumber = 0;
return nextAccountNumber;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

