

Methods

James Brucker

What is a Method?

Programming view: a method is a function. It can
return a value or not.

Design view: methods define the behavior of objects.
Methods are the way by which objects communicate

// deposit some money in an account
public void deposit(double amount) {
 balance = balance + amount;
}

Invoking a Method

To invoke the deposit method, you must use it as a
behavior of a BankAccount object.

Example:

BankAccount myAcct = new BankAccount("Ample Rich");
Scanner console = new Scanner(System.in);

// read some deposit data
System.out.print("Enter deposit amount: ");
long amount = console.nextLong();

// method: deposit the money in my account
myAcct.deposit(amount);

deposit instance method of a BankAccount object

Static Methods

 Static method is provided by a class, but not part of any
object.

 Invoke static methods using the class name:

Math.sqrt(25.0) sqrt of the Math class

MyClass.main() main method of a class

Integer.parseInt("123") convert String to int

System.exit(0) exit program.

 Static methods can be used without creating an object from
the class.

 This is why "main" is static.

Meaning of Static Methods

double length = Math.hypot(3.0, 4.0);

int amount = Integer.parseInt("123");

long now = System.currentTimeMillis();

// create a Calendar object using

// the current Locale information

Calendar cal = Calendar.getInstance();

 Most static methods are services provided by a
class.

 Some useful static methods:

Restrictions of Static Methods

 Static methods cannot directly access the instance
attributes (object attributes) or instance methods of a
class.

 Static methods are not polymorphic. You can't
implement polymorphism using a static method.
 Why?

The compiler "binds" the method call to the method
implementation of a particular class at compile time.
[called "static binding"]

main() is a static method

public class Greeter {
/** an instance method */
public String getReply() {

Scanner input = new Scanner(System.in);
return console.nextLine();

}
public static void main(String [] args) {

System.out.print("What's your name? ");
String name = getReply(); // ERROR

 // getReply is not static
}

 main() is a static (class) method. It cannot call an
instance methods unless you create an object first.

Instance Methods

 instance methods are the behavior of objects.

 access using the object name:

"hello there".length() length() of the String class

System.out.printf(...) printf method of "out" object

x.toString() return String form of x

 Instance methods can access the attributes of an
object.

 Instance methods can call static methods.

Instance Methods

 Instance methods have access to an object's attributes
(also called instance variables)

 Instance methods can use the this variable.
this means "this object".

public class BankAccount {

 long balance; // balance is an instance variable

 public BankAccount(long abalance) {

 this.balance = abalance;

 }

 public void deposit(long amount) {

 balance += amount; // same as "this.balance"

 }

Writing a Method

A method consists of these parts.

// return the maximum of 2 double values
public double max (double a, double b) {

if (a > b) return a;
else return b;

}

Access Control:

public
protected

(default)

private

Type of value
returned by this
method. "void" if
nothing is returned.

Parameters
Method

Body, with
returned
value.

Writing a Method (2)

This max method does not access any data other than the
parameters, so we could make it a static method:

// return the maximum of 2 double values
public static double max (double a, double b) {

if (a > b) return a;
else return b;

}

Access Control:
public, protected, private, or default [package access]

Declare a "static" method.

It is part of the class, not connected to any object.

Accessing a Method

 From inside of the class, you can refer to a method using just its
name.

 From outside of the class, you must use a class name (static
methods) or object reference (instance method) to call a method.

public class MyMath {
public static double max(double a, double b)
public static void main(String [] args) {

double x = 10.5;
double y = 10.51;
// call "max" of MyMath class:
double r1 = max(x, y);
// call "max" of Java's Math class:
double r2 = Math.max(x, y);

}

Accessing a Method

 For instance methods, use an object reference to qualify
method access.

public class Bank {
public static void main(String [] args) {

BankAccount a = getAccount("Ample Rich");
BankAccount b = getAccount("Still Poor");
// call "withdraw" of object a:
Money amount = a.withdraw(100000);
// call "deposit" of object b:
b.deposit(amount);

 }

a and b are references to BankAccount objects.

Visibility (Accessibility) of Methods

You control what objects can access an object's
methods.

There are 4 choices:

 private: method can only be invoked by code in this class.

 protected: method can be invoked by other classes in the same
package, or by any subclass of this class.

 public: method can be invoked by any Java program.

 default: can only be invoked by other classes in same package

public void deposit(long amount) {
/* body of the method */

}

Return Value of a Method

class BankAccount {

 public void deposit(long amount) {

 balance += amount;

 }

 public long getBalance() {

 return balance;

}

 A method may return a value. The type of return value
must be declared in the method header.

 A method which doesn't return any value should have
a return type of "void".

 In the method body, use "return <expression>".

void means this method does not
return a value.

Common Method Types

int getValue()

void setValue(int value)

boolean equals(Object other)

int hashCode()

String toString()

int compareTo(MyClass other)

These are examples of common methods.

Constructor

 A constructor is not a method, but the syntax is similar
 A constructor may have parameters.
 A constructor has no return value, not even "void".

public class BankAccount {
public BankAccount() {

balance = 0;
acctName = null;

}
public BankAccount(String name) {

balance = 0;
acctName = name;

}
public void BankAccount(String name, long balance) {

no return value

not a constructor

Review Questions

Identify each method as Static or Instance Method

 console.nextInt(); // console is a Scanner object

 String s = "This is too easy.";

s.length()

 double angle = Math.toRadian(45);

 System.out.println("Print me");

 Double.parseDouble("123.45E-12")

Identify all 3 methods. getTime() returns a Date.

 Calendar.getInstance().getTime().getMonth()

Interpretation of Static Methods

A static method can be:

 a service provided by the class

 a "public utility", like the methods in Math, or

 a way to create objects from the class (or another
class). Useful if creating objects is complex.

 This is called a Factory Method.

// Calendar.getInstance returns a new Calendar object,
// with the default timezone and locale
// getInstance is a Factory Method for the Calendar class.
Calendar date = Calendar.getInstance();

Static and Instance Methods

 What is wrong here?

public class TestProgram {
 public int max(int m, int n) {
 return (m>n)? m : n ;
 }

 public static void main(String [] args) {
 int n = 100;
 int m = 200;
 System.out.println("max of m, n is " +max(m,n));

// ERROR. Why?
 }
}

Static Methods, Instance Variables

 What is wrong here?

public class BankAccount {
long balance;
long accountNumber;
String accountName;
/** next available account number */
static long nextAccountNumber = 1;

pubic static long getNextAccountNumber()

 {
nextAccountNumber++;
accountNumber = 0;
return nextAccountNumber;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

