

Static Methods

A static method belongs to a class.

It isn't part of any object.

You invoke a static method using the class name.

double root = Math.sqrt(5.0);

// a static method of Math class

char c = 'a';

if (Character.isLetter(c))

// static method in Character class

 System.out.println(c + " is a letter");

Meaning of static Methods

Most static methods can be thought of as services
provided by the class.

 Math.sqrt() is a service of the Math class.

 Character.toUpperCase(c) is a service of the
Character class.

Static Methods: UML class diagram

Math
+PI: double

+ sqrt(double): double

Writing a static method

Just put the word "static" in the header.

class BankAccount {

private static double getInterestRate() {

... }

public static void main(String [] args) {

... }

static method cannot access
instance attributes

No object == no attributes.

class BankAccount {

 private double balance;

 public static void main(String [] args) {

 // ERROR - main() is static but balance

 // is an instance attribute

 int sum = balance; // ERROR

 BankAccount acct = new BankAccount();

 // OK - access attribute through object

 int sum = acct.balance; // OK

 }

 Static methods are statically bound. That is, the
compiler decides which method implementation to use.

 An object of a subclass can exhibit static behavior from
a parent. But it can be tricky...

 For instance methods, the method called depends
on the type of the object (determined at run-time).

 For static methods, the method called depends on
the type of the object reference (determined at
compile-time).

Binding of Static Methods

Static Methods: UML class diagram

BankAccount
accountName
accountID
balance
- nextID
+ deposit(amount)
+ withdraw(amount)
+ toString()
+ getAcctType()

CheckingAccount
- overDraftLimit
+ withdraw()
+ toString()
+ getAcctType()

instance methods

static method

Consider the instance method toString().

Which toString() is called in each case?

Instance Methods are Polymorphic

BankAccount acct = new BankAccount("Plain");

BankAccount chck = new CheckingAccount("Checking");

System.out.println("acct=" + acct.toString());

System.out.println("chck=" + chck.toString());

acct=[BankAccount] Plain 00000001

chck=[CheckingAccount] Checking 11000002

The toString() method that is invoked depends on the
actual type of the object reference (determined at run-
time).

Instance Methods

Test behavior using the static getAccountType().

Static Methods

public class BankAccount {

public static String getAcctType() {
return "Bank Account";

}

public class CheckingAccount
 extends BankAccount {

public static String getAcctType() {
return "Checking Account";

}

You shouldn't invoke static behavior using object
references, but sometimes you'll see this:

Static Methods are Not Polymorphic

BankAccount acct = new BankAccount("Plain");

BankAccount chck = new CheckingAccount("Checking");

System.out.println("acct=" + acct.getAcctType());

System.out.println("chck=" + chck.getAcctType());

acct=Bank Account

chck=Bank Account

Accessibility

Static context
(inside a static method)

Instance context
(inside an instance method)

can only access static elements,
unless you use a reference to an
object, .e.g.
Student s = new Student(...);
s.name; // OK

can access both instance and
static elements.
"elements" means attributes and
methods.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

