
Packages and import

James Brucker

Packages

 Java uses packages to organize classes.

 Packages reduce size of name space and avoid name
conflicts (two classes with same name)

Example: there are 2 Date classes.

java.util.Date "Date" class in java.util

java.sql.Date "Date" class in java.sql

Core Packages

java.lang Java language core classes
Object, String, System,
Integer, Double, Math
You never need to "import" classes
in java.lang. Its automatic.

java.io Classes for input and output
InputStream,
BufferedReader, File

java.util Collections, utilities, old Date/time
Calendar, Date, Scanner,
List, ArrayList, Set

java.time LocalDate, LocalTime, DateTime,
Duration

Useful Packages

java.net Network access
URL, URI, Socket

javafx Java FX graphics framework
Button, Scene, Animation,
event handlers

javax.swing Older Swing graphics framework
JButton, JFrame, etc.

Importing classes

Write "import" statements at top of file,
after the "package" statement (if you have one).

package coinpurse;

import java.util.Scanner;

import java.util.List;

/**

 * User interface for coin purse.

 */

public class ConsoleDialog {

Scanner console = new Scanner(System.in);

...

imports come after package
statement and before class

Javadoc comment.

What is "import"?

import tells the compiler where to find classes.

It doesn't actually "import" any code!

package guessinggame;

import java.util.Random;

/**

 * User interface for guessing game.

 */

public class GameDialog {

private Random rand = new Random();

...

tell the compiler where to find
the Random class

Why import?

The reason for "import" to to resolve ambiguity.

Many classes can have the same name.

Java API has 2 classes named "Date".

5 "Element" classes and interfaces.

3 "Timer" classes.

If your program uses a Date, you need import to specify
which Date you want:

import java.util.Date;

class Appointment {

private Date startDate;

Import Everything

You can import everything from a package. Use *

package graphics;

import java.util.*; // Date, List, Scanner, ...

import java.io.InputStream;

class Person {

private static Scanner console = ...;

private Date birthday;

private List<Person> friends;

...

Ambiguity in Import

If a class matches more than one wildcard "*", Java
requires you to resolve the ambiguity using an import
without the wildcard.

Example: There are 2 Date classes: java.util.Date
and java.sql.Date. These imports are ambiguous:

import java.util.*;

import java.sql.*;

/** a class using a Date */

class Ambiguous {

private Date today;
which Date class
should Java use?

How to Resolve Ambiguity?
There is a java.util.Date and java.sql.Date

Which Date class will Java use?

1. java.util.Date (because it is imported first)

2. java.sql.Date (because it is imported last)

3. depends on Java implementation

4. compiler error if more than one match

import java.util.*;

import java.sql.*;

class Ambiguous {

Date today = new Date();

Resolving Ambiguity

There are two ways to resolve ambiguity.

1. import a specific class (no wildcard)

2. use the fully qualified name in Java code

import java.util.*;

import java.sql.*;

import java.util.Date; // Solution #1

class Ambiguous {

private Date today = new Date();

 // Solution #2

private java.sql.Date mdate

= new java.sql.Date();

import and namespace

A name space means the collection of all names or
words that are defined at some point in your code.

The Java compiler uses a namespace to compile code.

import java.util.Scanner;

class Person {

private String name;

 public void setName(String aname) {

}

Name space includes:
Scanner, Person, setName, aname, name

+ everything in java.lang

import and namespace

"import" simply adds more names to the compiler's
namespace.

It does not have any effect on the size of compiled code.

import java.util.*;

class Person {

private String name;

import static

"import static" is used to add static members of a class
to the namespace.

It is a convenience so the programmer does not need to type
the class name.

import static java.lang.Math.abs;

class MyClass {

private double mean;

public double deviation(double x) {

return abs(x - mean);

}

Same as Math.abs()

import static for System

"import static Math.abs" is not useful: it makes the
meaning of "abs" less clear.

import static is more useful for reducing lots of redundant
text that makes code harder to read.

import static java.lang.System.out;

class MyClass {

 public static void main(String[] args) {

 out.print("I hate typing ");

 out.println("System.out so much");

 }

import static with wildcard *

"import static" can use wildcard to mean "import all static
members".

Example: JOptionPane has a lot of static constants for dialog
options.

import static javax.swing.JOptionPane.*;

class MyClass {

 public String getReply(String prompt) {

 showInputDialog(null, prompt,

 "input", QUESTION_MESSAGE);

 }

Why use package?

 Oracle recommends you always use a package for
your code.

Why?

1. Default package cannot be imported. Therefore...

2. classes in the default package cannot be "seen" by
classes in other packages.

Package Names use Domain Name

Convention: use domain name in reverse order for base
package name.

 http://junit.org is the home for the JUnit unit
testing framework.

The package name for JUnit is:

org.junit

 http://commons.apache.org provides reusable
software for Java. It contains many subprojects.

The base package name for Apache Commons is:

org.apache.commons

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

