Enum in Java

An enum defines a data type containing a fixed set of values. It's like a Class that contains a fixed number of static instances, which are created in advance. In fact, the Java compiler will compile an enum to be a final class with private constructor.
In a simple enum, the elements each have a name but no attributes.
Here is an enum named Size with 3 sizes:

public enum Size {

SMALL,

MEDIUM,

LARGE;

}
The members of this enum are Size.SMALL, Size.MEDIUM, and Size.LARGE.
You can use an "enum" almost like static constants in Java. Here is an example of computing the cost of a cup of coffee using its size.

class Coffee {

private String flavor;

private Size size;

/** constructor */

public Coffee(String flavor, Size s) {

this.flavor = flavor;

this.size = s;

}

public double getPrice() {

if (size == Size.SMALL) return 20.0;

if (size == Size.MEDIUM) return 30.0;

if (size == Size.LARGE) return 40.0;

throw new RuntimeException("illegal size");

}

}

This example shows how to use an enum:

	private Size size;
	You can declare a variable of an enum type. This variable can only be assigned values from the enum, such as: size = Size.SMALL;
You cannot write size = "SMALL";

	if (size == Size.SMALL) ...
	You can compare values of an enum using ==.

	switch(size) {

 case SMALL: return 15;

 case MEDIUM: return 20;
	enum can be used as a switch variable.

	SMALL.compareTo(LARGE) // -2
	enum automatically implements Comparable. compareTo returns the ordinal difference between elements.

Every enum has an automatic values() method that returns an array of all elements of the enumeration. Here are examples of using the values method:
1. Print all the values:

System.out.println("The sizes are:");

for(Size s : Size.values()) System.out.println(s);

// java converts each size name to a String
2. Put all the values in a JComboBox (for a GUI):

JComboBox sizeBox = new JComboBox(Size.values());
Enum also have a default toString() that returns the enum member name as a String. You can override toString in your enum, though.

System.out.println(size + " coffee"); // prints "SMALL coffee"
Enum With Properties and Methods

Enum can also have properties and methods, just like a class. This makes an enum much more useful. For example, an enumeration for units of length:

public enum Length {

FOOT("feet", 0.3048),

METER("meter", 1.0),

WA("wa", 2.0);

/** attributes of the enum members */

private final String name; // display name of this unit

public final double value; // value of this unit in meters

/** enum constructor must be private */

private Length(String name, double value) {

this.name = name;

this.value = value;

}

/** convert this unit to another unit */

public double convertTo(Unit other) {

return other.value / this.value;

}

/** override toString to define a string value used

 to display elements of an enum */

public String toString() { return name; }
}
In this example, the properties are declared to be final (constants), but that's not required. The value is "public final" because the value of a Length shouldn't change, and its convenient to directly access the value instead of using an accessor method; but you can write accessor and mutator methods for enum attributes, the same as for object attributes.
Enum methods can contain logic related to the enum. For example, to convert from "foot" to "meters" we can use:

double m = Length.FOOT.convertTo(Length.METER);

System.out.println("1 foot = " + m + " meter");
Display Value of Enum Members

By default, Java will display the name of an enum member if a String value is required:

System.out.println(Size.SMALL); // prints "SMALL"

If you want some other value displayed, define a toString() method as in Length.

System.out.println(Length.FOOT); // prints "feet"

Summary of enum Properties

· Members of an enum are static constants, for example Size.SMALL
· enum members can have attributes and methods:

Length.FOOT.value is 0.3048

FOOT.convertTo(Length.WA)
· You can declare a variable to be of an enum type:

Length u; // u is variable of type Length
· You can assign a value to a variable of enum type:

Length u = Length.FOOT;
· You can compare values using ==

if (u == Length.METER)

· You cannot create new objects from an enum:

Length f = new Length("foo",999) /* ERROR */
· Every enum has a built-in values() method that returns an array containing all members of the enum:

Length [] units = Length.values();

// units = { FOOT, METER, WA, ... }
· An enum can have constructors, but they must be private. This is the default.

private Length(String name, double value) { ... }
UML for Enum Type

How to show an enum in a class diagram?

Type Safety using Enum

The real benefit of using an enum is type safety. Consider the example of creating a new font. The constructor for Font is:

Font(String fontname, int style, int size)

The style parameter is supposed to be one of Font.PLAIN (0), Font.BOLD (1), or Font.ITALIC (2). But the Font constructor accepts any int value for style.
Suppose you want to create a Font using 14 pt "Arial" in BOLD face. But you accidently enter the parameters in the wrong order:

Font font = new Font("Arial", 14, Font.BOLD);

Since both the parameters are int, the compiler accepts this code. It runs, too! But the font size will be a tiny 1 point. If the style parameter had been an enum with members PLAIN, BOLD, and ITALIC then this error would be impossible.

A better font constructor would be:

Font(String fontname, FontStyle style, int size)

enum FontStyle {

PLAIN,

BOLD,

ITALIC;

}
The Java API is full of constructors and methods that use "int" for parameters that can legally have only a small number of values. This is probably because enum was added to Java in version 5.0, hence was not available to older classes.

<<enumeration>>

Length

METER

KILOMETER

CENTIMETER

MILE

FOOT

+toString(): String

+convertTo(Length):� double

<<enumeration>>

Size

SMALL

MEDIUM

LARGE

enum members must be listed before attributes & methods.

enum type
- 4 -

