

Abstract Method &
Abstract Classes

Jim Brucker

What is an Abstract Method?

An abstract method is a method declaration without a
method body.

An abstract method specifies behavior but no
implementation.

Example: In the Number class, intValue, longValue, ...
are abstract.

public abstract int intValue() ;

public abstract long longValue() ;

Methods declared to be abstract along
with other qualifiers (public, int, "throws ...").

Use semi-colon to end
the method declaration.

Interface Methods are Abstract

All the methods in an interface are abstract:

public interface Comparable {

public int compareTo(Object o);

}

public interface Comparable {

public abstract int compareTo(Object o);

}

is the same as:

Class with Abstract Method

A class can have abstract methods.

Example:

The Number class has. are abstract methods
intValue(), longValue(), and more

public abstract class Number {

public abstract int intValue() ;
public abstract long longValue() ;

Abstract Classes

A class with an abstract method is an abstract class.
 You must write "abstract class" in declaration.
 You cannot create objects (instances) of abstract class.

Error: Number num = new Number();

public abstract class Number {

public abstract int intValue() ;
public abstract long longValue() ;
...etc...

OK for type declaration

This is OK because Double is a concrete subclass:

Number pi = new Double(3.14159);

What Can You Put in Abstract Class?

An abstract class can contain anything that a normal
class can contain.

public abstract class Money
 implements Comparable<Money>
{

static final String CURRENCY = "Baht";
public Money() { ... }
public abstract int getValue();
// not abstract
public int compareTo(Money m) { ... }

Why Use Abstract Classes?

So you don't have to sleep at the office.

Assignment: Write a List

Your Boss: I want you to write a List that stores
elements in the Cloud. Call it "CloudList".

You: No problem.

Your Boss: We need it tomorrow. <<interface>>

List

CloudList

At work in your cubicle...

Easy... just
implement a

List using our
CloudIO
package

<<interface>>

List

CloudList

<<package>>

CloudIO
(company software)

uses services of

Open up the List API doc ...

Let's see...
what do I
have to

implement ?

<<interface>>

List
add(E): bool
add(int, E): void
addAll(Collection)
clear()
contains(Object)
containsAll(Collection)
equals(Object): bool
get(int): E
hashCode(): int
indexOf(Object)
isEmpty()
iterator(): Iterator<E>
lastIndexOf(Object)
remove(int): E
...

Try it in Eclipse: create a class that implements
List, using Java language level 7.0 (not 8.0)

Mission IMPOSSIBLE

There HAS
TO be an

EASIER way!

<<interface>>

List
add(E): bool
add(int, E): void
addAll(Collection)
clear()
contains(Object)
containsAll(Collection)
equals(Object): bool
get(int): E
hashCode(): int
indexOf(Object)
isEmpty()
iterator(): Iterator<E>
lastIndexOf(Object)
remove(int): E
...

AbstractList to the Rescue
<<interface>>

List
23 Abstract Methods

AbstractList

get(): E {abstract}
size(): int {abstract}

CloudList

add(E): bool
get(): E
remove(int): bool
size(): int

Only 2
abstract

methods

Extend
AbstractList.
It implements
most methods

for you.

You should also
override a few more,
like add() and
remove().

In Java 8, you have to do more work than this.

Other Examples of Abstract Classes

An interface specifies required behavior.

An abstract class provides a skeleton or convenience class for
implementing the interface.

Interface Abstract Class that
implements it...

MouseListener
(5 methods)

MouseInputAdapter
(0 abstract methods)

Set
(15 methods)

AbstractSet
(2 abstract methods)

Action
(6 methods)

AbstractAction
(1 abstract method)

Interface or Abstract Class?

Q: What is the advantage of using an interface
instead of an Abstract Class to specify behavior?

abstract class AbstractFunction {
/** function specification: no implementation */
abstract public double f(double x) ;

}
Abstract method does not have a body.

public class MyApplication extends AbstractFunction {
/** implement the method */
public double f(double x) { return x/(x+1); }
...

}

Why Use Abstract Classes?

Many applications are designed to work with objects of
many different classes.

The application (or framework) accepts objects of the
base class as parameter.

Abstract Base Class

provides some behaviorApplication
uses

Your Class

extends and customizes the
behavior

extends

This application "thinks" it is using
an instance of the base class;
in fact it is using an instance of
your class.

Depend on Interfaces

A better design is for application to depend on interfaces,
but also provide abstract base class to help programmer
implement the interfaces.

Abstract Base Class

provides some behavior
Application

uses

Your Class

extend and customize the
behavior

Program to an interface, not to
an implementation.

<<interface>>

SomeInterface

participates in

Example of Abstract Classes

A Java GUI application is built using objects of a class
named java.awt.Component.

 Component is an abstract base class

 real components (Buttons, Boxes, ...) are subclasses
of Component

 Containers that manage components "think" that all
components look & behave like Component.

//API: Container.add(Component c)
 container.add(new JButton("Press me"));
 container.add(new JLabel("Get a life."));
 container.add(new JComboBox(array));

Swing & Abstract Classes

Each real component extends Component and overrides the
behavior that it wants to specialize.

Benefit:

1) any Component can be put in any Container (like JPanel)

2) we can create our own component by extending
Component. We don't need to rewrite most methods from
Component.

Component

JButton JCheckbox JLabel JTextComponent

JComponentButton Checkbox Label TextComponent

Inheritance & Interface for Coin Purse

Discuss and design in class:

We want the Coin Purse to accept many kinds of money,
such as Coin, BankNote, Check, and even KU
Coupons (from KU Fair).

How can we use interface to make Purse polymorphic?

How can we use abstract classes to reduce coding and
duplicate code?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

