
Assertions

"Programming by Contract"

Assertions

 Assertions are tests that should always be true at a
given point in a program.

 Assertions help verify program correctness during
development.

 If an assertion is false, an exception is raised.

 After the program is completed, assertions can be
disabled using a compiler option, so they do not effect
"production" code.

Use of Assertions
Pre-conditions: conditions that should always be true when

the method is invoked

Post-conditions: conditions that should be true when the
method returns

Example: when we play a Game, the game should not be null.

public int play(Game game) {
// game should not be null!
assert game != null : "game is

null";

"assert" versus throw AssertionError

 "assert" will throw an AssertionError.

 can we write this? is it equivalent?

// game should not be null!
if (game == null)

throw new AssertionError(
"game is null");

// game should not be null!
assert game != null : "game is null";

(Answer is no. You can disable 1st code using compiler, but not the
second.)

assert versus IllegalArgumentException

 If a parameter value is invalid, you could also throw
exception:

For methods that are part of a public API (which can
be called by other applications) throwing exception is
better.

public int play(Game game) {

if (game == null) throw

new
IllegalArgumentException("...");

"assert" in other languages

 how to emulate assertions in C:

#include <myheader.h>

#if DEBUG
if (fromStack == null)
fprintf(stderr, "fromStack is null");

#endif

/* myheader.h */

#define DEBUG 1 /* 0 for production version */

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

