
  

1. Inner Class

public class OuterClass {
 private JTextField inputField;
  private JButton button;

   class ButtonListener implements ActionListener {
     public InnerClass() { /* initialize */ }
     public void actionPerformed( . . . ) {
            String text = inputField.getText( );
  }
   }
}



  

Inner Classes

Object of InnerClass belongs to an 
object of the OuterClass.

InnerClass object has access to all 
fields and methods of OuterClass 
object, including private ones.

InnerClass object does not exist 
without OuterClass object.

But: static inner class is 
independent of OuterClass object, just 
like a static method.  Static inner class 
cannot access fields of outer class 
(just like a static method).



  

button listener using Inner Class
public class SwingDemo {
    private JTextField inputField;
    private JButton button;

 private void initCompoents() {
      button = new JButton( "Login" );
      // add an event listener to the button
      button.addActionListener( 
                   new ButtonListener( ) );

...
}

   // an inner class of the SwingDemo class
  class ButtonListener implements ActionListener {

 public void actionPerformed(ActionEvent evt) {
  String user = inputField.getText().trim();
  ...

    }
  }



  

Properties of Inner Classes

●    An object in an inner class can access variables 
of an object from the outer class, even private 
ones. (see previous slide)

●    Inner classes can be public or private, just like 
methods and attributes.  The same rules apply.

●    An inner class object is always associated with 
an object from the outer class. 
In previous slide, this means you can't write:

   new SwingDemo.ButtonListener( );

   // can't create inner class object by itself



  

2. Nested Class

public class Point {

   // A nested class

   static class Double {

     public double x, y;

       public Double(double x, double y) {

           this.x = x;  this.y = y;

       }

    }

}

A nested class is a class inside another class that is static, so you 
can create objects of the nested class without an object of the outer 
class.  Example:

Point.Double p = new Point.Double( 1.5, 2.5 );



  

Why Use Nested Class?

1. Group together related variants of a type.

2. Nested classes can share methods of outer 
class.  Nested classes can be defined as 
subclasses of the outer class, so you could write 
something like this:

// suppose Point.Double extends Point

Point p = new Point.Double(1.5, 0.8);

p.getLength();  // using polymorphism


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

