OOP	Lambda Expressions and Functional Interfaces	Page 3
Lambda Expressions
A lambda expression is an unnamed function, together with its scope (called a closure). To use lambdas in Java, you need at least Java version 8. The syntax of a lambda expression is:
	(Datatype variable[,...]) -> { statement block; }
for example, a lambda that prints its argument to System.out is:
	(Object x) -> { System.out.println(x); }
in cases where there is only one variable and the data type can be inferred from context, you can omit the data type and parenthesis:
	x -> { System.out.println(x); }
if the lambda definition is only a single statement you can omit the brackets { } and semi-colon, too.
	x -> System.out.println(x)
Use of Lambda Expressions
The most common use is to define an implementation of an interface that has only one required method. These are called functional interfaces. The examples below illustrate this use.
Where To Use Lambdas and Their Type
You use a lambda expression as an argument (parameter value) to a method, or assign it to a variable. Every lambda express has a type; the type must an interface with one abstract method. This makes sense because a Lambda provides a single method.
Example 1: define a Comparator and assign it to a variable:
// define a Comparator for case-insensitive ordering of Strings
Comparator<String> compareIgnoreCase =
 (a,b) -> a.compareToIgnoreCase(b);
// sort an array of strings, ignoring case
Arrays.sort(array_of_string, compareIgnoreCase);
Example 2: define and use comparator in one statement.
// sort an array of strings, ignoring case
Arrays.sort(array_of_string, (a,b) -> a.compareToIgnoreCase(b));
In both of these examples, the compiler can infer that a and b must by type String. In the second example, it also infers that the lambda is defining a Comparator<String> because that is the expected type of parameter.
Examples
In a Swing GUI, we can add an ActionListener to a button using an anonymous class like this:
button.addActionListener(new ActionListener() {
	@Override
	public void actionPerformed(ActionEvent evt) {
		System.out.println(evt.getSource() + " pressed");
	}
	});
Usiing a lambda expression we could write this as:
button.addActionListener(
	(ActionEvent event) -> {
		System.out.println(event.getSource() + " pressed"); });
Java knows from context that an ActionListener is required as argument to addActionListener() and it knows that ActionListener has only one method, with a parameter of type ActionEvent. Hence, the meaning of the Lambda is clear from context. So we don't need to write the parameter type. Since it's only one statement we can omit the {...}, too:
button.addActionListener(
	 event -> System.out.println(event.getSource() + " pressed"));

Suppose we want a Comparator to preform a case insensitive sorting of an array of Strings.
String [] array = { "Jack fruit", "durian", "Apple", "fig", "banana"}; Comparator<String> comp = new Comparator<String>() {
 public int compare(String a, String b) {
 return a.compareToIgnoreCase(b);
 }
};
Arrays.sort(array, comp);
Using a lambda expression, with 2 parameters, we would write this as:
Comparator<String> comp = (a,b) -> a.compareToIgnoreCase(b) ;
Arrays.sort(array, comp);
Or we could define the comparator inline:
Arrays.sort(array, (a,b) -> a.compareToIgnoreCase(b));
The Java compiler knows that the second argument to Arrays.sort must be a Comparaotr, and can infer that the type must be String.
Lambdas for Functions without Arguments
To write a lambda expression for a method without parameters, use () for the lambda params, as down in method declarations. For example, the Runnable interface has a single method run(). To write a lambda as Runnable:
Runnable task = () -> System.out.println("running") ;

Method References
Sometimes the body of a Lambda expression simply passes parameters to another method.
Java defines method references of the form: "Classname::methodName" for static methods, and "objectReference::methodName" for instance methods. Note the double colon :: in method references.
As a simple example, Java has a java.util.function.Consumer interface with a single method accept that returns void. Its called a consumer because it "consumes" a value and doesn't return anything. We could define a consumer to print its argument:
 Consumer print = (x) -> System.out.println(x);
 print.accept("Hello nerd");
This lambda just passes the parameter (x) to another function, so we could rewrite it as a method reference:
 Consumer print = System.out::println;
 print.accept("Goodbye, nerd");
In the case insensitive sorting example above:
[bookmark: __DdeLink__129_1820115567] Comparator<String> ignoreCase = (a,b) -> a.compareToIgnoreCase(b);
 Arrays.sort(array, ignoreCase);
can also be written as a method reference, using:
 Arrays.sort(array, String::compareToIgnoreCase);
From context, Java knows that the second parameter to sort() must be a Comparator<String>, and Comparator<String> has a single required method with 2 String parameters. Since string.compareToIgnoreCase is not static, Java uses the first parameter (a) as the object reference, and the second parameter (b) as the parameter to compareToIgnoreCase, so it becomes: a.compareToIgnoreCase(b).
Lambda as Commands

Suppose we have a list of Students with a name, id, and birthday.Student

name: String
id: String
birthday: LocalDate

We want to print all the students born this month.
A simple code for this is:
public void filterAndPrint(List<Student> students, int month) {
 for(Student s : students) {
 if (s.getBirthday().getMonthValue() == month)
 System.out.println(s);
 }
}
Code improvement:
1) define a Filter interface with a single method boolean test(Student s).
2) use anonymous class to define Filter for birthday.
3) use lambda instead of anonymous class.
4) don't need Filter: java.util.function.Predicate does the same thing.
5) add a Consumer to generalize "print".

References
· Oracle's Java Tutorial has a section on Lambda expressions. It also has a section on the new properties of interfaces in Java 8.l

