

Event Handling in JavaFX

Event Driven Programming

 Graphics applications use events.
 An event dispatcher receives events and notifies

interested objects.

Event

EventQueue
1. ActionEvent
2. MouseEvent
3. KeyEvent
4. WindowEvent
...

void handle(Event event) {

}

Event Listener

notify

Example

1. User clicks mouse on a button -- that's an Event.

2. JavaFX creates a MouseEvent object.
– the MouseEvent describes what happened (which

mouse button was presses, which field it was in).

3. JavaFX looks for a registered "Event Listener", and calls it
using the MouseEvent as parameter.

MouseEventClick! void handle(Event event) {

}

My Event Listener

notify
MyButton

JavaFX user interface

Responding to Behavior

Your application must do something when an event

occurs.

Things you need to know
 what kinds of events are there?
 what user (or software) action causes what event?
 how do you write an event handler?
 how do you add event handler to a component?

Check the Event class API

All Events are subclasses of Event.

Event

 ActionEvent

 InputEvent

 KeyEvent

 MouseEvent

 WebEvent

 WindowEvent

Types of Events

From Oracle's JavaFX Tutorial:

https://docs.oracle.com/javase/8/javafx/events-tutorial/processing.htm

Source of Events

A component or node can be "source" of many kinds of events.

Some event types are different for each node or component.

Its not complicated! Mostly you can guess event types.

Button ActionEvent (button press)

TextField ActionEvent
KeyEvent (Key Press, Key Release, Key Typed).

Any kind of Node MouseEvent: MousePress, MouseReleased,
MouseClicked, MouseDragged, etc.
Rotation events, Touch events

What is an EventHandler?

<<interface>>

EventHandler<T extends Event>

+handle(event: T): void

JavaFX has just one interface for all kinds of Event
Handlers. This is a lot simpler than Swing and AWT.

You have to write code to implement this interface.

Example: ENTER or Button click

1. User types his name and clicks a button (or ENTER)

Event type is: ActionEvent

class ButtonHandler

 implements EventHandler<ActionEvent>
{
 public void handle(ActionEvent evt) {

 String text = nameField.getText();

 // greet user using Alert dialog box

 alert("Hello, "+text);

 nameField.setText(""); // clear input

 }

}

How to Add Event Handler

There are two ways.

1) addEventHandler - the general way

2) setOnXxxxx - convenience methods for specific event
type, such as:

setOnAction(EventHandler<ActionEvent> e)

setOnKeyTyped(EventHandler<KeyEvent> e)

setOnMouseClicked(EventHander<MouseEvent> e)

setOnMouseMoved(EventHander<MouseEvent> e)

...

2 Ways to Add Event Handler (demo)

// 1. use addEventHandler:

button.addEventHandler(
ActionEvent.ALL, new ButtonHandler())

// 2. use setOnAction

button.setOnAction(new ButtonHandler())

Notice that the EventHandler is the same.

The result will be the same, too.

Both add Event Handler for ActionEvents.

You can re-use event handlers

For clarity, or to reuse the same event handler on many
components, assign new event handler to a reference
variable first.

Then use the variable in setOnAction(...).

ButtonHandler greetHandler =

 new ButtonHandler();

// Now apply handler to components

button.setOnAction(greetHandler);

nameField.setOnAction(greetHandler);

Don't Create Duplicate Handlers

It is bad programming to create two objects to
do the same thing (greet the user).

// don't do this
button.setOnAction(new ButtonHandler());

nameField.setOnAction(new ButtonHandler());

4 Ways to Define an EventHandler

1. Define an (inner) class that implements EventHandler.
We just did that.

2. Write it as anonymous class.

3. Write it as a method and use a method reference.
 Method reference is new in Java 8.
 Works because Event Handler has only 1 method.

4. Write it as a lambda expression and use a reference
variable to add it.

Event Handler as Anonymous Class

EventHandler<ActionEvent> buttonHandler =

 new EventHandler<ActionEvent>() {

 // anonymous class definition:

 public void handle(ActionEvent evt) {

 String text = nameField.getText();

 //TODO greet user using Alert box

 nameField.setText(""); // clear input

 }

 };

button.setOnAction(buttonHandler);

You must specify what interface you are implementing,
including type parameter.

Avoid inline definition & use

// This is harder to understand, especially

// when the anonymous class is long.

button.setOnAction(

 new EventHandler<ActionEvent>() {

 public void handle(ActionEvent evt) {

 String text = nameField.getText();

 //TODO greet user using Alert box

 nameField.setText(""); // clear input

 }

 });

This is hard to understand and hard to maintain.
Avoid it. Define the anonymous class first, then use it.

Method as Event Handler?

Using SceneBuilder to assign event handlers

we did not write inner classes or anonymous classes.

We just wrote a method, like this:

 @FXML

 public void greetTheUser(ActionEvent evt) {

 String text = nameField.getText();

 //TODO greet user using Alert box

 nameField.setText(""); // clear input

 }

SceneBuilder let us use a method as Event Handler, instead of object.

How?

Method References

Runnable nike = this::doit; // method reference

nike.run(); // calls doit()

// this "looks like" a Runnable.run() method

// so we can use it as method reference.

public void doit() {

 System.out.println("Just do it.");

}

Java 8 allows a method reference to be used as
something that implements an interface. The syntax is:

object::methodname

Method Reference as EventHandler

// Assign event handler using method reference

 button.setOnAction(this::greetAction);

 // this method signature "looks like" an

 // EventHandler, but the name is different

 public void greetAction(ActionEvent evt) {

 String text = nameField.getText();

 //TODO greet user using Alert box

 nameField.setText(""); // clear input

 }

Write a method with the required method signature, but
any name you like.

Lambda Expressions

Lambda Expression is an inline method definition,
without a method name.

EventHandler<ActionEvent> buttonHandler =
 (event) -> {

 String text = nameField.getText();

 //TODO greet user using Alert box

 nameField.setText("");

 } ;

button.setOnAction(buttonHandler);

5th Way to Define Event Handler

class GreetController

 implements EventHandler<ActionEvent> {

 @FXML

 public void initialize() {

 button.setOnAction(this);

 ...

 public void handle(ActionEvent event) {

 // handle it.

You can define the controller itself as "implements
EventHandler<T>" and use "setOnAction(this)".

This technique is not usually the best choice. You usually have many
components which need custom event handlers.

Event Handling Exercise

 Draw a Sequence Diagram of logic for creating and
using an ActionEvent handler.

Event Dispatching

When an event occurs, JavaFX does:

1. Determine the event target.

2. Event Capture: pass the event down from the root node
to the target.

Along the way, EventFilters may be invoked.

3. Event Handling (Event Bubbling): starting at the target,
any event handler is invoked. The event "bubbles" back
up the tree until it is consumed.

See:

https://www.tutorialspoint.com/javafx/
javafx_event_handling.htm

References

Event Handling in Oracle JavaFX Tutorial. This has the
most complete explanation of event types and event
handling

https://docs.oracle.com/javase/8/javafx/events-
tutorial/events.htm

Event Handling in Tutorialspoint JavaFX Tutorial.

https://www.tutorialspoint.com/javafx/
javafx_event_handling.htm - example of event
capture, event filter, and event handler.

JavaFX Events

http://zetcode.com/gui/javafx/events/

Code for alert()

/**

 * Display a dialog box with a string message.

 * @param message the message to show.

 */

public void alert(String message) {

 Alert alert = new Alert(AlertType.INFORMATION);

 alert.setContentText(message);

 alert.show();

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

