
  

JavaFX and FXML

How to use FXML to define the 
components in a user interface.



  

FXML

FXML is an XML format text file that describes an 
interface for a JavaFX application.

You can define components, layouts, styles, and 
properties in FXML instead of writing code.

<GridPane fx:id="root" hgap="10.0"  vgap="5.0" xmlns="...">
     <children>
        <Label fx:id="topMessage"
                              GridPane.halignment="CENTER"/>
        <TextField fx:id="inputField" width="80.0" />
        <Button fx:id="submitButton" onAction="#handleGuess" />
        <!-- more components -->
     </children>
</GridPane>



  

Creating a UI from FXML

The FXMLLoader class reads an FXML file and creates a 
scene graph for the UI (not the window or Stage).

It creates objects for Buttons, Labels, Panes, etc. and 
performs layout according to the fxml file.

FXMLLoader

game.fxml

creates

reads



  

Code to Provide Behavior

The FXML scene define components, layouts, and 
property values, but no behavior or event handlers.

You write a Java class called a Controller to provide 
behavior, including event handlers:

class GameController {

    private TextField inputField;

    private Button submitButton;

    /** event handler */

    void handleGuess(ActionEvent e)...
    



  

Connecting References to Objects

The FXML scene contains objects for Button, TextField,  ...

The Controller contains references to the objects, and 
methods to supply behavior.

How to Connect Objects to References?

class GameController {

    private TextField inputField;

    private Button submitButton;

    /** event handler */

    void handleGuess(ActionEvent e)...
    



  

fx:id and @FXML

In the FXML file, you assign objects an "fx:id".

The fx:id is the name of a variable in the Controller class 
annotated with @FXML. You can annotate methods, too.

class GameController {

    @FXML

    private TextField inputField;

    @FXML

    private Button submitButton;

    /** event handler */

    @FXML

    void handleGuess(ActionEvent e)
    

fx:id="inputField"



  

The fxml "code"

You can use ScaneBuilder to create the fxml file.  This 
example is just to illustrate the connection.

<GridPane fx:id="root" hgap="10.0"  vgap="5.0" xmlns="..."
                   fx:controller="game.GameController" >
     <children>
        <Label fx:id="topMessage" GridPane.halignment="CENTER"/>
        <TextField fx:id="inputField" width="80.0" />
        <Button fx:id="submitButton" onAction="#handleGuess" />
        <!-- more components -->
     </children>
</GridPane>

Name of controller class (can also set this in code)

Reference to variables and methods in Controller.



  

FXMLLoader creates scene from FXML

Tell FXMLLoader to load FXML and create a scene graph.

Instead of initComponents() use FXMLLoader.load()

public void start(Stage stage) throws IOException {

    // Find the fxml file as part of our application

    URL fxmlfile = getClass().getResource("game/GameUI.fxml");

    // Create the scene graph

    Parent root = FXMLLoader.load( fxmlfile );

    Scene scene = new Scene(root);

    stage.setScene( scene );

    stage.setTitle("Guessing Game");

    stage.show();

}



  

What is getClass().getResource()?

getClass().getResource(filename) finds files that 
are included as part of your application.

Parameter is the relative path to the file.

You must use getResource(filename) because you do not 
know where on the user's computer your app is installed.

[YOUR APPLICATION]/  
    GameApp.class
    game/
        GameUI.fxml
        GuessingGame.class
        GameController.class

path is relative to your 
application



  

Example: image as resource

Suppose your app has some images in a subdirectory 
named images/  relative to your source code root.

These images will be copied to the compiler output (bin/) 
and included in a JAR file.

URL background = 

  getClass().getResource("images/Backgnd.jpg");

src/  
    GameApp.java
    images/
        Backgnd.jpg
        Player.png

        



  

Example: getting an InputStream

You can also create an InputStream for the resource.

InputStream in = getClass()

   .getResourceAsStream("images/Player.png");

ImageView image = new ImageView( in );

src/  
    GameApp.java
    images/
        Backgnd.jpg
        Player.png

        



  

getResource() is a "short cut"

getClass().getResource() is a convenience method.

The work is actually done by the ClassLoader object:

  this.getClass().getResource("dat/foo.csv");

is short cut for:

  this.getClass().getClassLoader()

      .getResource("dat/foo.csv");

src/  
    dat/
        foo.csv

        



  

Better code for start()

Two problems may occur when creating a scene graph 
from an fxml file:

public void start(Stage stage) throws IOException {

    (1) Returns null if the file is not found 
    URL fxmlfile = getClass().getResource("game/GameUI.fxml");

    (2) May throw IOException
    Parent root = FXMLLoader.load( fxmlfile );
    



  

FXMLLoader as Instance

Sometimes you want a reference to the FXMLLoader.  

Using the loader, you can get/set the Controller class or 

set properties.   To get an instance of FXMLLoader:

// Find the fxml file as part of our application

URL fxmlfile = getClass().getResource("game/GameUI.fxml");

// Create the scene graph

FXMLLoader loader = new FXMLLoader( fxmlfile );

Parent root = loader.load();

    



  

Example Using SceneBuilder

Create a GUI for the GuessingGame using FXML.

Using SceneBuilder for FXML and VS Code for Code.

Eclipse & IntelliJ can invoke SceneBuilder inside the IDE, 
but in VS Code you use SceneBuilder separately.



  

GuessingGame Structure

GameUI.fxml
GameController

inputField: TextField
submitButton: Button
giveUpButton: Button

handleGuess()
initialize()

GuessingGame

secret

count

guess(number)
getMessage()

GameApp

the "main" class
main( )
start( stage )

FXMLLoader.load()



  

General Approach

1. Design the UI on paper.  Name important components.

Iterate:

2. Controller
– create references and @FXML annotation
– define event handler methods & initialize()

3. UI using SceneBuilder
– specify Controller class -- this is key!
– create components (of course)
– set fx:id of components
– (optional) set event handlers -- or set in controller

4. Test & Code Review



  

UI Design & component fx:id

topMessage
(shows hint)

statusMessage

giveUpButton
submitButton

inputField



  

SceneBuilder Important Parts

1. Specify the Controller class (left 
side, at bottom).

2. Assign fx:id to components:
● select the component &

open "Code" pane
● select the fx:id from a list

3. Assign Event Handlers 
(or do it in code).



  

Model - View - Controller Design

Most Web and GUI applications use the Model-View-
Controller design.

The Controller translates UI requests into requests the 
model understands and conveys results to the UI.



  

Source Code for Example

https://github.com/jbrucker/guessing-game.git

Some details are slightly different.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

