
OOP Lab Syllable Counter using a State Machine Page 1

Objectives Design a state machine to count syllables in words.  Draw a state machine diagram 
and then implement it using a) a simple non-OO approach (enum for states) and b) 
the OO approach (interface for states).  
Verify your code by counting syllables for all words in a dictionary.

What to Submit Commit your code to Github as project named syllable-counter.
Ask TA to check your State Machine diagram on paper before 16:00.

Assignment

1. Draw a State Machine Diagram of an algorithm for counting syllables in a word.

2. Write two classes, each with a method named countSyllables(String word) that implements a state 
machine and counts syllables in a word.  It returns the number of syllables. If something is not a word, 
return 0.

3. Use the state machine appraoch.  A state machine should never need to look at the previous 
character or the next char in deciding what to do.  Your code should depend only on the current state and 
current character (or event).  Avoid "if" as much as possible (some "if" are necessary).

4. Count the words and syllables in dictionary.txt located at http://se.cpe.ku.ac.th/dictionary.txt.  The 
file has one string per line, but some of them are not actual words according to our definition. Write a 
separate Main class to read words, call the syllable counter, and print results.

How to count syllables?

This assignment uses the same rules as the Flesch Readability Index (PA4)  to count syllables.  The 
number of syllables in a word is equal to the number of vowel sequences -- groups of vowels.

A vowel sequence is one or more vowels that occur together. A vowel is a, e, i, o, u, or (sometimes) y.  
Here are the cases with examples:

1. Groups of consecutive vowels count as one syllable. vowels are: a e i o u. y counts as vowel only
if it is the first vowel in a vowel group.

banana = 3 vowel sequences b(a)n(a)n(a)

durian = 2 vowel sequences d(u)r(ia)n

beauty = 2 vowel sequences b(eau)t(y)

layout = 2 vowel sequences l(a)y(ou)t. "y" is not counted as a vowel because it comes after 
another vowel.

2. A final "e" as a single vowel is not counted, unless it is the only vowel in the word.

apple = 1 vowel sequence (a)pple  Don't count final "e".

louvre = 1 vowel sequence l(ou)vre  Don't count final "e".

The, me, he, she, we = 1 vowel sequence. Count the final "e" because it is the only vowel.

  movie = 2 vowel sequences  m(o)v(ie)  Final "e" is part of a multi-vowel group, so count it!

levee = 2 vowel sequences   l(e)v(ee).  Same reason as "movie".

3. "y" counts as a vowel if is the first vowel in a vowel group; it is a consonant otherwise.

try = 1 vowel sequence, "y" acts like vowel: tr(y)

beyond = 2 vowel sequences, "y" acts like consonant: b(e)y(o)nd

yesterday = 3 vowel sequences: (ye)st(e)rd(a)y

  Yahoo = 2 vowel sequences (Ya)h(oo)



OOP Lab Syllable Counter using a State Machine Page 2
4. A dash '-' in the middle of word acts like a consonant and divides vowel sequences.

    anti-oxidant = 5 vowel sequences  (a)nt(i)-(o)x(i)d(a)nt
    next-door = 2 vowel sequences in one word  n(e)xt-d(oo)r
 -oxidant = not a word.  Dash cannot be at start of a word.
    anti- = Ignore dash at end of word. It sometimes occurs in writing.

5. Ignore apostrophe (') anywhere in the word, including beginning and end.

isn't = isnt
  student's = students' = students

6. Not a word.  Any string that contains non-letters or doesn't contain any vowels is not a word.  The 
only exceptions are "-" and apostophe (') in case 4 and 5.

mrtg
Java5se
I.B.M.   ("." between letters)
7-Eleven (contains "7")

Problem 1. Identify States and Events, Draw a State Machine Diagram

Design a state machine for counting syllables in a sequence of characters without embedded spaces. 

Draw a State Machine Diagram with States, Events, and Actions taken during transition or while in a 
state.  See document Programming a State Machine in class week9 folder for UML examples.

Show all possible events and transitions, even transitions back to the same state.

States: Define your own states. Here is one possible set of states.

START = start of the string, no characters processed yet.  

CONSONANT = most recent character is a letter but not a vowel.

SINGLE_VOWEL = the most recent character is a vowel, including 'y', that is the first vowel in a 
vowel group.

MULTIVOWEL = most recent char is a vowel that follows another vowel (2 or more vowels together).

HYPHEN = most recent character is a hyphen.  In the middle of a word, hyphen behaves like a 
consonant, but you cannot have two hyphen together.

NONWORD = the character sequence is not a word. Enter this state if you see any character other than 
letter or hyphen.

Events: The event is handling (reading) a character.

Actions: add 1 to the syllable count.  Show this action at correct places on state diagram.



OOP Lab Syllable Counter using a State Machine Page 3

Problem 2: Write a class to implement a Simple State Machine
2.1 Write a SimpleSyllableCounter class with a method
named countSyllables to count syllables in a String.

countSyllables returns the number of syllables in
the String.  If the string parameter is not a word then return 0.

2.2 Use your state machine diagram to implement countSyllables.

 use the state machine approach with a simple enum for states

 only look at one character at a time: don't use the previous character and don't look-ahead at the 
next character.

An example of using a simple (non-OO) state machine is:
int countSyllables( String word ) {

int syllables = 0;
char c = ' ';
State state = State.START;   // State is an enum of the states
for(int k=0; k<word.length(); k++) {

c = word.charAt(k);
if (c == '\'') continue; // ignore apostrophe
switch(state) {
// process character c using state machine
case CONSONANT:

if (isVowelOrY(c)) { state = SINGLE_VOWEL; syllables++; }
else if (isLetter(c)) /* stay in consonant state */;
else if (c == '-') state = State.HYPHEN ;
else state = State.NONWORD;
break;

case VOWEL:
if (isVowel(c)) state = State.MULTIVOWEL;
else //TODO
break;

//TODO other cases
} 

} // end of loop for chars in word
// End of word: Correct syllable count for the "final e" rule.
// You only need the current state and current letter to do this

The Character class has some useful methods for testing characters:

Character.isLetter( c ) - true if c is a letter
Character.isWhitespace( c ) - true if c is whitespace (space, tab, newline)

2.3 Ignore accidental whitespace at the beginning of the word.  Whitespace means a space, tab, or 
newline character.

2.4 Don't look ahead (next char) or look back (previous char).  The state and current character should 
contain all the information you need to decide what action to take.  In a state machine you don't need 
look-ahead or look-back.

If it appears you do need to look-ahead or look-back, then redefine your states or add more states to 
differentiate the cases.

SimpleSyllableCounter

countSyllables( String ) : int



OOP Lab Syllable Counter using a State Machine Page 4

Problem 3:  Design and Write an O-O style State Machine

Write another class named OOSyllableCounter with a countSyllables(String word) method.  In this 
class use the O-O approach to state machine.  Define an interface or abstract class for states, and a 
concrete class for each of the states.

You can write the State interface and State classes an inner classes or external classes.  These instructions 
are for inner classes (inside the WordCounter class) to simplify the code.

3.1  Since reading a character is an event, each State needs a method like handleChar(char).  You
should also define enterState() and use it to increment the syllable count when entering the initial 
vowel (or single-vowel) state.

abstract class State {
public abstract void handleChar(char c);
public void enterState( ) { /* default is to do nothing */ }

}
3.2 Write an implementation for each of the states.

class SingleVowelState extends State {
public void handleChar( char c ) {

if ( isVowel(c) ) setState( MULTIVOWEL );
else if ( isLetter(c) ) setState( CONSONANT );
//TODO handle other cases

}
public void enterState( ) {

syllableCount++;
}

}
3.3 In the WordCounter class, you need to provide a setState( ) method.

class WordCounter {
private final State START = new StartState( );
private final State SINGLEVOWEL = new SingleVowelState( );
//TODO add other states
private State state;  // the current state
private int syllableCount = 0;

/** change to a new state */
public void setState( State newstate ) {

// this "if" may not be necessary.
if (newstate != state) newstate.enterState( );
state = newstate;

}

3.4 Write the countSyllables method using states.  It delegates the work of handling each character 
to the current state.  The "for" loop just calls state.handleChar(c). It should be a lot simpler than 
in Problem 2.

3.5 What about special cases at the end of word?  Can you delegate that to the state classes?

Problem 4: Test the syllableCounter

Create a test class to test syllableCounter using some words that you know syllable count.  There is a 
WordCounterTest.java class in the same folder as this lab assignment.  You should add more tests 
to this file.



OOP Lab Syllable Counter using a State Machine Page 5
You should design a test for each case, such as words with final e (the) and with another vowel (move, 
tire), and multi-vowel (movie), an "e" by istelf (means "and" in Spanish), no vowels, and so forth.

Points will be deducted from this lab for lazy or incomplete set of tests. Testing is an essential part of 
software development.

Problem 5: Write a Main class to count a dictionary and calculate elapsed time
5.1 Write a Main class with a method (not the "main" method) that reads all the words from a URL or 
File and calls countSyllables.  Output the total number of words, syllables, and the elapsed time in 
seconds.  For example:

Reading words from http://se.cpe.ku.ac.th/dictionary.txt

Counted 102,000 syllables in 38,600 words

Elapsed time: 1.220 sec
 
5.2 Use this URL for the dictionary file:  http://se.cpe.ku.ac.th/dictionary.txt
There is one word for line, but the file may contain blank lines and whitespace chars (check for them).  
Example code for opening a URL as input stream is:

final String DICT_URL = "http://se.cpe.ku.ac.th/dictionary.txt";
URL url = new URL( DICT_URL );
InputStream input = url.openStream( );

For fast reading of input as Strings, use a BufferedReader (its faster than Scanner).  Since the dictionary 
file contains only one word per line, parsing it is easy.

BufferedReader reader = 
                   new BufferedReader( new InputStreamReader( input ) );
while( true ) {
    String word = reader.readLine();
    // BufferedReader.readLine() returns null at end of the input
    if (word == null) break;

There is a short, C-style idiom for this (but harder to write try-catch):

while( (word = reader.readLine()) != null ) {
    // process this word
}

Optional: Use Recursion and/or Regular Expression
For a challenge, try using recursion to count syllables and a regular expression to match vowel groups.
A partial regular expression match the first syllable group in a word (as match group 1) and then match 
everything else as match group 2 is:  "[b-z'&&[^aeiouy]]*([aeiouy][aeiou]*+)([a-z'\\-]*)". 

Regular expressions are defined in Javadoc for the Pattern class and in the Java Tutorial.

Programming Hints

Don't try to write everything at once.  Write code to handle some kinds of words first and test that it 
works.  For example: ignore the "final e" or "-" special cases.  Let those test cases fail while you 
concentrate on handling the basic cases.   When you get the basic cases to work, then add more states to 
make the specials test cases pass.

Reference
 Programming a State Machine in class week9 folder.
 Wikipedia, Finite State Machines. 


	Assignment
	How to count syllables?
	Problem 1. Identify States and Events, Draw a State Machine Diagram
	Problem 2: Write a class to implement a Simple State Machine
	Problem 3: Design and Write an O-O style State Machine
	Problem 4: Test the syllableCounter
	Problem 5: Write a Main class to count a dictionary and calculate elapsed time
	Optional: Use Recursion and/or Regular Expression
	Programming Hints
	Reference

