
OOP Lab Purse with Strategy Pattern for Withdraw

Instructions Modfy the Purse to use a WithdrawStrategy for deciding which items to withdraw
from the Purse. The Purse's own withdraw method should use the WithdrawStrategy
object to decide ("advise") what to withdraw.
The Purse's own withdraw method then removes the items from its money list and
returns them as an array (same as your original code).
Steps are described in detail below.

What to Submit Add the code to your coinpurse project and push it to Github.
The WithdrawStrategy interface and implementation should be in package
coinpurse.strategy.

Introduction to the Strategy Pattern

The Strategy Pattern is useful in an application that uses an algorithm to perform some task, and
there is more than one algorithm that can be used. You would like a way to select which algorithm
to use, or even add new algorithms later (without changing the original code).

In the Coin Purse, the withdraw method uses an algorithm to decide what items to withdraw, and
there is more than one algorithm we could use. That's a good place to apply the Strategy Pattern.

Here's a description of how to use Strategy:

Context: An object (called the Context) has some behavior that you can implement using several different
algorithms, and you'd like to be able to change the algorithm independent of the Context.

Solution: Design an interface for the method(s) that performs the algorithm. This is the Strategy. Modify
the Context class so that it calls a method of the Strategy to perform the task, instead of doing the task itself.
Then write a concrete implementation of the Strategy interface.

Notice that the Strategy needs a reference to some data from the Context so it can perform the task for the
Context. In the Coin Purse, the Strategy needs to know what items are in the Purse in order to decide what
the Purse should withdraw. So, in the Strategy interface, the method(s) need a parameter that refers to the
Context or some data from the Context (e.g. money in the Purse).

In the Context, provide a "setStrategy" method so you can specify the strategy at run-time.

Coin Purse Withdraw Method

The withdraw() method in Purse uses an algorithm to decide which items it should withdraw.

There is more than one algorithm for this, and we might want to change which algorithm we use.

So, define a WithdrawStrategy for Purse, and modify the Purse code to use WithdrawStrategy.

The WithdrawStrategy decides which items to withdraw, but does not modify the contents of the Purse.
The strategy only "recommends" what the Purse should do, and let's the Purse perform the actual withdraw.
That's good encapsulation and separation of responsibility. Purse is responsible for managing money in the
Purse.

- 1 -

Context

-strategy: Strategy

setStrategy(Strategy)
doWork()

<<interface>>
Strategy

doWork(Context)

ConcreteStrategy

doWork(Context)

AnotherStrategy

doWork(Context)

OOP Lab Purse with Strategy Pattern for Withdraw
In order for WithdrawStrategy to "recommend" what to withdraw, the WithdrawStrategy needs to know
what money is in the Purse and how much we want to withdraw.

So, it needs parameters for (a) items in the purse, (b) how much to withdraw, (c) the currency.

WithdrawStrategy returns a List of items to withdraw (not an array).

Problem 1: Define a Withdraw Strategy for Coin Purse and Implement It

Here are steps to implement this:

1. Write some unit tests for the current withdraw method (if you don't have them already!). This is to verify
that it works before and after you change the code. JUnit Purse tests were given in an earlier lab. Those are
a good start. Does your Purse pass all the tests?

2. Create a new package to hold withdraw strategies named coinpurse.strategy.

3. Define a WithdrawStrategy interface for withdrawing money from the purse. It has only 1 method,
as shown in the UML diagram.

Write good Javadoc for WithdrawStrategy! An interface is a specification of some behavior, so it needs
clear, complete documentation that tells others how to implement the behavior. Javadoc should explain:

 what do the parameters mean? Can WithdrawStrategy modify the parameters?

 what does it return? What does it return if can't withdraw the requested amount?

 what are the preconditions for calling withdraw? Does the withdraw method require that valuables
(in List) be sorted? Can the List of valuables be empty? Can the amount parameter be zero?

4. Create a concrete class named GreedyWithdraw that implements WithdrawStrategy. Copy the code
from your Purse.withdraw method into GreedyWithdraw -- except the last part that removes items from the
Purse and returns an array. That part is still performed by the Purse's withdraw() code.

 GreedyWithdraw does not need any attributes! All the code is in the withdraw() method.

5. Add a WithdrawStrategy attribute to the Purse, and initialize it in the Purse constructor to a
GreedyWithdraw object. That's the strategy your Purse will use.

6. Modify the Purse withdraw method to call withdrawStrategy.withdraw(). If the WithdrawStrategy returns
a non-null result (success) then use the list to withdraw money from the purse and return an array (same as
original code).

7. Test the modified code. It should work the same as the original code.

- 2 -

OOP Lab Purse with Strategy Pattern for Withdraw
/**
 * Select and return items from a collection whose total value equals
 * the requested amount and having the given currency.
 *
 * @param amount is the amount of money to withdraw.
 * @param currency is the currency to use for withdraw. Must not be null
 * @param items the contents that are available for withdraw.
 * Must not be null, but may be an empty list.
 * This list is not modified?
 * @return if a solution is found, return a List containing references
 * from the money List whose sum equals the amount.
 * If a solution is not found, returns ????
 */
public List<Valuable> withdraw(double amount, String currency,
 List<Valuable> items);

Problem 2: Modify Purse so we Can Set the Withdraw Strategy

To make the WithdrawStrategy useful, we need a way to change which strategy the Purse uses -- without
modifying the Purse code.

Add a setWithdrawStrategy() and getWithdrawStrategy() method to the Purse.

For Hackers: to verify that setWithdrawStrategy() is working, define another WithdrawStrategy that does
something different. Be creative. For example, a NoWithdraw strategy that never withdraws anything!

public class NoWithdraw implements WithdrawStrategy {
 public List<Valuable> withdraw(...) {
 // Hoard everything! Never withdraw.
 return null;
 }
}
// In the Main class:
purse.setWithdrawStrategy(new NoWithdraw());

Design Principle

Do you remember this design principle from the StopWatch lab?

"Separate the part that varies from the part that stays the same. Encapsulate the part that varies."

It the StopWatch lab, the part that varies are the tasks that we want to compute the run time. The part that
stays the same is the timeAndPrint code.

In the Purse, what is the part (of code) that varies? How are we encapsulating it?

- 3 -

	Introduction to the Strategy Pattern
	Coin Purse Withdraw Method
	Problem 1: Define a Withdraw Strategy for Coin Purse and Implement It
	Problem 2: Modify Purse so we Can Set the Withdraw Strategy
	Design Principle

