
OOP Lab Purse with Recursive Withdraw Strategy

Instructions Implement a RecursiveWithdraw strategy for the Purse, that uses recursion to decide
what items to withdraw.
Write JUnit tests that include cases where (a) greedy withdraw fails but withdraw is
possible (recursion should succeed), (b) edge cases to verify recursion is correct,
including some case where withdraw should fail. The JUnit test succeeds if
recursion fails, that is, the code is correct!

What to Submit Add the code to your coinpurse project and push it to Github.

Withdraw Strategies

The original withdraw algorithm for the Purse tries to remove the highest value item first, then add
smaller items until it gets the requested amount.

Unfortunately, it doesn't always work. Suppose the Purse contains these coins:

5-Baht, 2-Baht, 2-Baht, 2-Baht

if we try to withdraw 6-Baht, the greedy withdraw algorithm fails. There are many, many cases like this, so
don't try to fix withdraw with some cludgy code like "if it fails then I'll ignore the first item and try again".

A strategy that will always find a solution (if it exists) is recursion. Recursion can be time consuming, but
the Purse typically does not contain many items so it should be feasible.

Problem 1: Write JUnit Tests for Failed Withdraws

1.1 Add at least 2 withdraw tests to the PurseTest class to test cases where a withdraw should be possible,
but the greedy withdraw fails.

1.2 Also add at least one test for some edge case where recursion might make a mistake, such as a deep
recursion, or a code that forgets to check the currency, e.g. Purse contains 2-Baht, 2-Cats, 2-Baht and try to
withdraw 6 Baht. The JUnit test should pass when withdraw does not succeed (that is, code is correct).

Another good edge case is something that requires withdraw to alternately pick an item and skip an item, to
check for misplaced if - else logic.

Problem 2: Implement a Recursive Withdraw Strategy

Write a RecursiveWithdraw strategy to compute a withdraw using recursion. The algorithm is similar to
the groupSum problem on codingbat.com.

2.1 Write a RecursiveWithdraw strategy class in the coinpurse.strategy package.

2.2 Repeatedly test your code using unit tests and command line. If you discover new test cases that failed
during command line testing, create a JUnit test for that case.

2.3 Perform Code Review: When your code passes all tests, take a break and then perform Code Review.
Read your RecursiveWithdraw code line-by-line and explain to yourself what each line does. Try to find
bugs that testing missed. If you find any "missed" bugs, create a new JUnit test that does detect it.

2.4 Don't hard-code the RecursiveWithdraw object into Purse. In the main class call
purse.setWithdrawStrategy() give the Purse a reference to a RecursiveWithdraw object.
The word "RecursiveWithdraw" should not appear anywhere in the Purse class!

Programming Hints

1. Use Recursion to choose which items to withdraw by examining one item from the money list (first item
or last item), and then recursively call withdraw() to try to find the remaining amount using other items in
the list.

- 1 -

OOP Lab Purse with Recursive Withdraw Strategy
2. For the recursive step, create a sublist of the current list of Valuable that excludes the one item you are
withdrawing (or not withdrawing) at this step:

List<Valuable> sublist = list.subList(start, end);

list.subList(start, end) creates a view of the list starting at index start, and up to (but not
including) index end. It is a view, not a copy. This is efficient -- no copying of the List. If the List is
modified, the view will change, too. In Jshell:

> List<String> fruit = List.of("apple", "banana", "fig", "grape");

> fruit.subList(1,4)

["banana", "fig", "grape"]

> fruit.subList(0,2)

["apple", "banana"]

subList is a useful method and it really is a view, not a copy, of the list. If you change the List then the view
changes. If you change the view, it changes the list (so be careful).

3. The recursive method should use the typical recursion pattern:

List<Valuable> withdraw(amount, currency, money):

// 1. Base Case: Did the withdraw succeed? Are there any elements in the list?
// If withdraw succeeds, create a new List and return it, else return null.

// 2. Recursive Step. select one item in the list, and apply recursion
Valuable first = money.get(0); // or last item, if you prefer that

// 2.1 include this item in the money to witthdraw (if possible).
// Try to withdraw the remaining amount using the rest of the money list.
// Some code is missing here:
remaining = amount - first.getValue();
List<Valuable> result = withdraw(remaining, currency,
 money.subList(1,money.size()));
// Did the recursive withdraw succeed?

// 2.2 don't use this item for withdraw.
// If Case 2.1 didn't succeed or currency of first item didn't match,
// try to withdraw the entire amount using the other items in the list.

4. Don't create a new List (for the return value) at each recursive step! Only create a new list for the
solution in the base case, when you decide if you have found a solution. Higher level callers will append
their item to this return list. Avoid unnecessary computation or object-creation in the recursive step.

How to See What RecursiveWithdraw is doing?

The withdraw strategy object doesn't print anything, so it is hard to debug.

You could add code at the beginning and before every return to print something. To keep you code clean,
write methods named enter() and leave() to print whatever is useful to you. For example:

public List<Valuable> withdraw(...) {
 enter(amount, currency, money);
 // do something
 List<Valuable> result = ...
 // call leave before returning. leave() will return its parameter
 return leave(result);
}
//TODO: write enter() and leave() to print a message on console.

- 2 -

OOP Lab Purse with Recursive Withdraw Strategy

Reference

Big Java chapter 13 covers Recursion.

codingbat.com "Recursion-2" problem set covers recursion with backtracking. The groupSum problem is
exactly like this one.

- 3 -

OOP Lab Purse with Recursive Withdraw Strategy

Example of Recursive Withdraw

Here is an example recursive withdraw using a list of numbers. To simplify the example, plain numbers are
used.

withdraw(amount, list) - try to withdraw amount from list of numbers. Returns a List of elements to
withdraw.

"Case 1" means "use first list item as part of the withdraw, and recursively withdraw the remaining
amount"

"Case 2" means "don't use first list item as part of the withdraw, recursively withdraw the entire amount"

"Base Case" means the base case for recursion is used to decide what to return.

Call withdraw(4, {1, 2, 3})

- 4 -

withdraw(4, {1, 2, 3})

withdraw(3, {2, 3})

withdraw(1, {3})

withdraw(1, {})

withdraw(3, {3})

Base Case: return null since
list is empty but amount > 0

withdraw(0, {})

Case 1

Case 1

Case 2

Case 2

Case 1

Base Case: success since
amount == 0: return empty
list (success)

return {}

return {3}

return {3}

return {1,3}

return null

Case 1
not

possible
(1 < 3)

	Withdraw Strategies
	Problem 1: Write JUnit Tests for Failed Withdraws
	Problem 2: Implement a Recursive Withdraw Strategy
	Programming Hints
	How to See What RecursiveWithdraw is doing?
	Reference
	Example of Recursive Withdraw

