
Coin Purse Object-Oriented Programming in Java

Coin Purse

Objective Practice using list methods to implement an O-O style application.

Starter Code Accept the assignment on Github Classroom to create a repository with starter
code. Assignment URL: https://classroom.github.com/a/DU03pnX3

What to Submit Submit your code to Github. Please include a README.md file.

Requirements

1. Write an application to simulate a coin purse that we can insert and remove money.

2. A purse has a fixed capacity. The capacity is the number of objects that you can put in the purse.
Capacity limits the number of objects (money), not the value of the objects.

3. A purse should tell us how much money is in the purse. Since money can have different
currencies, this is a little complex. We have to ask for the balance using a specific currency.

4. We can insert and withdraw money. For withdraw, we ask for an amount to withdraw and the
purse decides which objects to withdraw.

Application Design

1. Identify the Classes: We need at least 3 classes

Coin - things we can put in the purse

Purse - manages money

User Interface - interacts with the user
2. Identify Responsibility. What is the main responsibility of each class?

3. Determine the behavior: what should each object do?

4. Determine attributes: what does an object need to know?

- 1 -

User Interface

insert(Money)

Coin object Purse object

Coin Purse Object-Oriented Programming in Java

1. Coin

Coin has a value and currency. that cannot be changed.
Behavior:

get the value and currency

test for equality to another Coin

describe itself (toString)

toString for Coins:

if the value is a whole number (1.0, 5.0, etc)
then return a string like "100-Yen coin",
otherwise, format it with 2-decimal places, e.g.:
"0.50-Baht coin" (we may improve this in another lab)

1.1 Implement Coin

1. Implement the Coin class in a package named coinpurse.

2. Implement methods as described in the course handout "Fundamental Java Methods".

equals(Object arg) is true if arg is a Coin and arg has same value and currency as this Coin.

toString() if the value of the coin is a whole number (1, 5, 10, etc) then return a String such as
"5-Baht coin". Otherwise, return a string with 2-decimal places, e.g. "0.25-Baht coin". (We may
improve this in another lab).

1.2 Test the Coin class in BlueJ, jshell, or test code in a file

Test all the Coin methods. Here are some examples, but don't just copy! Create your own tests.

> import coinpurse.Coin;
> Coin one = new Coin(1, "Baht");
> Coin five = new Coin(5, "Baht");
> one.toString()
"1-Baht coin"
> one.equals(five)
false
> Coin c = new Coin(1, "Baht");
> one.equals(c)
true
> c = new Coin(5, "Ringgit");
> five.equals(c)
false

2. Make Coins Comparable (for sorting or ordering)

The Purse (problem 4) will need to be able to sort coins by value, so define a method used for
ordering coins. In Java, this is done by implementing an interface named Comparable that specifies
one method named compareTo.

Comparable is part of the Java API. Don't write Comparable yourself, just use it in your code.

1. Declare that the Coin class implements Comparable for comparison to other coins.

package coinpurse;
/**

- 2 -

Coin

-value: double

-currency: String

+Coin(value, currency)

+getValue(): double

+getCurrency(): String

+toString(): String

+equals(object): boolean

Coin Purse Object-Oriented Programming in Java
 * Coin class represents a coin with a fixed value and currency.
 * @author Bill Gates
 */
public class Coin implements Comparable<Coin> {

 //TODO define attributes
 //TODO define constructor and methods

 public int compareTo(Coin other) {
 // order coins by value - see below
 }
}

2. Write the compareTo method so that it compares coins by value.

coin1.compareTo(coin2) < 0 if coin1 has less value than coin2
= 0 if coin1 and coin2 have same value
> 0 if coin1 has greater value than coin2

The exact value returned by compareTo does not matter. The only requirement is that a negative
value means coin1 is "before" coin2 in the sort order (called lexical order), a positive value means
coin1 is "after" coin2, and return value of 0 means that they have the same sort order (for example,
two 1-Baht coins).

3. Test it.

> Coin a = new Coin(5, "THB");
> Coin b = new Coin(2, "THB");
> a.compareTo(b)
1 (or any positive value)
> b.compareto(a)
-1 (or any negative value)
> b.compareTo(b)
0

4. Try sorting an array of coins.

> String bt = "Baht";
> Coin[] coins = { new Coin(5,bt), new Coin(1,bt),
 new Coin(0.5,bt), new Coin(2,bt) };
> java.util.Arrays.sort(coins);
> coins
 (if you inspect it, the coins should see the coins are sorted -- but there is an easier way)
> java.util.Arrays.toString(coins)
["0.50-Baht coin", "1-Baht coin", "2-Baht coin", "5-Baht coin"]

More practice: you can do this with an array of String or Double. Sorting strings can be surprising.

4. Order coins by currency, too. When we sort or search a List of coins, we would like all the "Baht"
and "baht" coins together, then all the "Peso" coins together, then "Ringgit" coins, etc.

coin1.compareTo(coin2) < 0 if coin1 has a currency that is "before" coin2's
 currency in dictionary order (ignoring case), or if both
 coins have same currency and coin1 has smaller value

= 0 if coin1 and coin2 have same currency (ignoring
 case) and same value.

> 0 if coin1 has greater currency or value than coin2

This is a challenge for you: write a compareTo that orders coins first by currency (ignoring case),
then by value for coins of same currency. Note that String has a method compareToIgnoreCase.

- 3 -

Coin Purse Object-Oriented Programming in Java

> Coin tenbaht = new Coin(10,"Baht");
> Coin satang = new Coin(0.5, "Baht");
> Coin yen = new Coin(5, "Yen");
> tenbaht.compareTo(yen)
-24 (any negative value, since "Baht" is before "Yen")
> tenbaht.compareTo(satang)
1 (positive, since 10-Baht > 0.50-Baht)
> yen.compareTo(new Coin(100, "Yen"))
-1 (5-Yen < 100-Yen)

3. List Practice

Use the Java documentation for ArrayList and Collections (not Collection) to complete these
exercises. You can put this code in a static method (easy to re-run), BlueJ codepad, or jshell.

import java.util.*; // for List, ArrayList, and Collections

// (1) Create a list of coins.
List<Coin> list = new ArrayList<Coin>();

// (2) add one coin and check the list
Coin twenty = new Coin(20, "Astra");
list.add(twenty);
list.size()
list.get(0)

// (3) add many coins. In BlueJ the loop must be on one line.
for(int val=9; val > 0; val--) list.add(new Coin(val, "Baht"));

// (4) display the size of the list in console window
System.out.println("List size is " + list.size());

// (5) show what is in the list. Use a a "foreach" loop.
for(Coin c : list) System.out.println(c);

// (6) Sum the total value of coins (ignore currency)

// (7) sort the list.
java.util.Collections.sort(list);

// (8) Print the list again. Should be sorted. (repeat (5))

// (9) remove the twenty Astra coin from list using its index.

// (10) remove everything from the list.

// (11) verify the list is empty -- two ways
list.size()
list.isEmpty()

- 4 -

Coin Purse Object-Oriented Programming in Java

4. The Purse

Write a Purse class that manages some coins.

Behavior:

insert and withdraw Coins

inquire the balance of Purse (by currency)

check if Purse is full

Attributes (what it knows):

the capacity (how many coins it can hold)

the coins in the Purse

Methods:

Purse(capacity) a constructor that creates an empty purse with a given capacity.
new Purse(10) creates a Purse with capacity 10 coins.

int count() returns the number of coins in the Purse (not the capacity)

int getBalance(
 String currency)

returns the value of all the coins in the Purse that have the given
currency (ignoring case) Return 0 if no coins match the currency.

int getCapacity() returns the capacity of the Purse

boolean isFull() return true if the purse is full

boolean insert(Coin) try to insert a coin in Purse. Returns true if insert is OK, false
if the Purse is full or the Coin is not valid (value <= 0).

Coin[] withdraw(
 double amount,
 String currency)

try to withdraw money. Return an array of the Coins withdrawn.
If purse can't withdraw the exact amount, then return null.

toString() return a String describing how much money is in the Purse

UML Diagram

- 5 -

Purse

-coins: List<Coin>

-capacity: int

+Purse(capacity: int)

+count(): int

+getBalance(currency: String):
 double

+getCapacity(): int

+insert(coin: Coin): boolean

+isFull(): boolean

+withdraw(amount: double,
 currency: String): Coin[]

Coin Purse Object-Oriented Programming in Java

Example: A Purse with capacity 3 coins.

Purse purse = new Purse(3);

purse.getBalance("Baht") returns 0

purse.count() returns 0

purse.isFull() returns false

purse.insert(new Coin(5,"Baht")) returns true

purse.insert(new Coin(10,"Baht")) returns true

purse.insert(new Coin(0,"Baht")) returns false. Don't allow coins with value <= 0.

purse.insert(new Coin(5,"Yen")) returns true

purse.count() returns 3

purse.isFull() returns true

purse.getBalance("Baht") returns 15

purse.toString() returns "Purse with 15 Baht, 5 Yen"

purse.withdraw(11,"Baht") returns null. Can't withdraw exactly 11 Baht.

purse.withdraw(15,"Baht") returns [Coin(5,Baht), Coin(10,Baht)]

purse.getBalance("Baht") returns 0.

5.2 Thoroughly test the Purse

Thoroughly test the Purse class. Try both valid and invalid inputs.

Hints for Withdraw

1. When you are trying to withdraw money, use a temporary list to hold the Coins you want to
withdraw. Each time you add a Coin to the temporary list, deduct its value from the amount you
need to withdraw. If the amount remaining is reduced to zero then you succeeded.

2. Before starting the withdraw, sort the coins.

3. Then, start from the end of the list (coin with biggest value) and work back toward the start of the
list. It may be helpful to first find the start-index and end-index of list elements having the currency
you want, so you don't need to check currency each time.

4. Don't use coins.removeAll(templist) because it will remove all coins that are equal (using
equals) to any Coin in templist. Instead, use a loop and remove Coins one-by-one.

5. withdraw returns an array, so you need to copy your tempList to an array. Use ArrayList.toArray
to copy the coins:

Coin[] array = new Coin[tempList.size()];
tempList.toArray(array);

- 6 -

Coin Purse Object-Oriented Programming in Java

5. Console User Interface

For this lab, you can use the ConsoleDialog in the sample code. No coding necessary. We will
use a boring Console interface.

The ConsoleDialog needs a reference to the Purse so it can call the purse's methods. We want it use
a Purse, not create one. So, we set a Purse reference in the ConsoleDialog constructor:

// set a reference to purse object in the ConsoleDialog
ConsoleDialog ui = new ConsoleDialog(purse);

6. Write a Main class to create objects and start the program

Write a Main class with a static main method to create objects and "connect" them together and
start the program. The main method implements this sequence diagram:

(1) create a Purse object with some capacity

(2) create a user interface and give it a reference to the purse it should use.

(3) call consoleDialog.run() to start the ConsoleDialog object

package coinpurse;
/**
 * Main class creates objects and starts the application.
 */
public class Main {

public static void main(String [] args) {

 //TODO create the purse
//TODO create ConsoleDialog and give it the purse
//TODO run ConsoleDialog
}

}

- 7 -

: Main

purse : Purse

: ConsoleDialog

 new Purse(capacity)

This means "an object named
purse that is of type Purse"

 new ConsoleDialog(purse)

 run()

Coin Purse Object-Oriented Programming in Java

List methods used in this Lab

Create an ArrayList
that can hold anything

List list = new ArrayList();

// List is an interface, ArrayList is a class.

Create an ArrayList

to hold Coin objects

List<Coin> coins;

coins = new ArrayList<Coin>();

Number of items in a
list

int size = coins.size(); // like array.length

Add object to a list. boolean ok = list.add(object);

if (! ok) /* add failed! */

Get one Coin from list
without removing it.

Coin coin = coins.get(0); // get item #0

Coin coin2 = coins.get(2); // get item #2

Get one Coin and
remove it from list

Coin c = coins.remove(0); // remove item 0

or:

Coin c = coins.get(0);

coins.remove(c);

Iterate over all
elements in a list

// Use for-each loop to print each coin in list:

for(Coin coin : list)

System.out.println(coin);

// Another way. Use for loop with an index (k).

for(int k=0; k < list.size(); k++)

System.out.println(list.get(k));

Copy a List into an
array of exactly the
same size

List<String> list = new ArrayList<String>();

list.add(...); // add some elements

String[] array = new String[list.size()];

list.toArray(array); // copies list to array

Copy everything from
list2 to the end of list1.

List list1 = new ArrayList();

List list2 = new ArrayList();

list2.add(...); // add stuff

list1.addAll(list2); // copy list2 into list1

- 8 -

	Coin Purse
	Requirements
	Application Design

	1. Coin
	1.1 Implement Coin
	1.2 Test the Coin class in BlueJ, jshell, or test code in a file
	2. Make Coins Comparable (for sorting or ordering)
	3. List Practice
	4. The Purse
	UML Diagram
	5.2 Thoroughly test the Purse
	Hints for Withdraw
	5. Console User Interface
	6. Write a Main class to create objects and start the program
	List methods used in this Lab

