

Introduction to Inheritance

James Brucker

These slides cover only the basics of inheritance.

What is Inheritance?

SuperClass
more

general

SubClass
more

specialized

is ais a

UML for inheritance

One class incorporates all the attributes and behavior
from another class -- it inherits these attributes and
behavior.
 A subclass inherits all the

attributes and behavior of the
superclass.

 It can directly access the
public & protected members
of the superclass.

 Subclass can redefine some
inherited behavior, or add
new attributes and behavior.

Terminology

Different names are used for
inheritance relationships.

They mean the same thing.

Actor Animal

parent class
superclass
base class

child class
subclass
derived class

Actor
more

general

Animal
more

specialized

"Specializing" or "Extending" a Type

Consider a basic Car.

What is the behavior of a Car?

An AutomaticCar is a special kind of
Car with automatic transmission.

AutomaticCar can do anything a Car
can do.

It also adds extra behavior.

Car

start()
stop()
accelerate()

AutomaticCar

drive()

start()
stop()
accelerate()

Benefit of Extending a Type

Extension has some benefits:

Benefit to user

If you can drive a basic Car,
you can drive an Automatic Car.
It works (almost) the same.

Benefit to producer (programmer)

You can reuse the behavior from
Car to create AutomaticCar.
Just add automatic "drive".

Car

start()
stop()
accelerate()

AutomaticCar

drive()

start()
stop()
accelerate()

What do you inherit?

A subclass inherits from its parent classes:

 attributes

 methods - even private ones.

 cannot access "private" members
of parent, but they are inherited

SavingAccount
deposit(amount)

Object

Account
accountID
owner
dateCreated
Account()
...

In Java, Object is a
superclass of all classes.

Any method that Object
has, every class has.

Syntax for Inheritance

Use "extends" and the parent class name.

class SubClass extends SuperClass {
 ...
}

class SuperClass {
 ...
}

Interpretation of Inheritance (1)

Superclass defines basic
behavior and attributes.

Account

- accountName
- accountID
balance
+ deposit(Money) : void
+ withdraw(Money) : void
+ toString() : String

SavingAccount

+getInterest(): double

+withdraw(Money) : void

+toString() : String

Interpretation of Inheritance (2)

A subclass can...

 add new behavior and
attributes (extension)

 redefine existing
behavior (specialize)

Account

- accountName
- accountId
balance
+ deposit(Money) : void
+ withdraw(Money) : void
+ toString() : StringSubclass can override

methods to specialize its
behavior.

SavingAccount overrides
withdraw and toString.

Attributes and Inheritance

class SavingAccount extends Account {

 public String toString() {

 m = balance;

 id = getAccountId();

Subclass can access:

1) public and protected attributes of parent

2) for private attributes must use an accessor method
(provided by the parent class)

protected member of Account

use accessor method to get
private accountId value of
Account

Object: the Universal Superclass

 All Java classes are subclasses of Object.

 You don't write "... extends Object".

Object defines basic methods for all classes:

java.lang.Object
#clone() : Object

+equals(Object): bool

+finalize() : void

+getClass() : Class

+hashCode() : int

+toString() : String

+wait() : void

Every class is
guaranteed to have
these methods.
Either:
(1) inherit them

(2) override in subclass

Specializing from Object

 Most classes want to define their own equals and
toString methods.

 This lets them specialize the behavior for their type.
 Java automatically calls the class's own method

(polymorphism).

Coin

+equals(Object): bool

+hashCode() : int

+toString() : String

Coin overrides these
methods for Coin
objects.

Object

Constructors and Inheritance

To build a building...

 first you must build the foundation

 then build the first floor

 then build the second floor

 etc.

Example: Double is subclass of Number

Double d = new Double(1)

Foundation (Object) Foundation (Object)

Floor 1 (Number)

Floor 2 (Double)

Number

Object

Double

Which Constructor Executes First?

To build an object of the Double class...

 first you have to build the foundation class (Object)

 then build the 1st subclass (Number)

 then build the 2nd subclass (Double)

Example:

Double d = new Double(1.0);

Object
Number

Object

d : Double

Number

Object

Calling a Superclass Constructor

When you invoke an object's constructor, it always calls a
constructor of the superclass.

Example:

 Double d = new Double(2.5);
 implicitly calls Number(), which implicitly calls Object().

Object
Number

Object

Double

Number

Object

super()

super()

new Double()

Try It!

Write 3 classes with a "default" constructor.

Each constructor prints "Creating a new xxx"

Entity

Person - subclass of Entity

Student - subclass of Person

Main - create a Student & print it

What is printed?

Starter Code
public class Entity {
 /** Constructor for a new Entity */
 public Entity() {
 System.out.println("Creating a new Entity");
 }
}
public class Person extends Entity {
 /** Constructor for a new Person */
 public Person() {
 System.out.println("Creating a new Person");
 }
}
//TODO Write Student class
public class Main {
 public static void main(String[] args) {
 Student s = new Student();
 System.out.println("Student is "+s);
 }

Calling a Superclass Constructor

Each subclass must invoke its subclass constructor to
"build" the superclass object.

2 ways to do this:
 implicitly - Java compiler inserts call to super().
 explicitly write super() in constructor code to

invoke super-class constructor

Object
Number

Object

Double

Number

Object

super()

super()

Implicit call to superclass Constructor

public class Object {
public Object() { /* constructor for Object class */ }

public class Number extends Object {
public Number() { // default constructor

 }

public class Double extends Number {
public Double(double value)
{

 this.value = value;
}

 If a class does not explicitly call a "super" constructor,
then Java will automatically insert a call to super()

 Java calls the superclass default constructor (no params)

super()

super()

Explicitly Call Superclass Constructor

 A subclass can call a superclass constructor using the
reserved name: super(...)

super must be the first statement in the constructor.

public class Person extends Entity {
 protected String name;

public Person(String name) {
this.name = name;

}
}

public class Student extends Person {
public Student(String name, long id) {

super(name); // means: Person(name)
 this.id = id;

}
}

Add Constructor Parameters
Person constructor requires a name.

Student constructor requires name & id.

public class Person extends Entity {
 protected String name;
 public Person(String name) {
 this.name = name;
 }
}
public class Student extends Person {
 // DO NOT REDEFINE "name" here
 private long id;
 public Student(String name, long id) {
 this.name = name; // access from Person
 this.id = id;
 }
}
// In Main.main:
Student s = new Student("Joe Hacker",60111222L);

What happens?

Error in automatic call to super()

public class Student extends Person {
 public Student(String name, long id) {

 // initialize Student attributes
 this.id = id;

 In Student:

The Java compiler issues an error message:

Implicit super constructor Person() is undefined.

implicit call to super()

What's the solution?

The compiler added an implicit call to super(), but Person
does not have a default constructor.

Assign Responsibility!

 The name attribute belongs to Person.
 The Person class should be responsible for setting the

name, getting the name, testing the name, etc.
 Its good encapsulation. (name can be private, too.)

public class Student extends Person {
 public Student(String name, long id) {
 super(name); // explicit call to super
 this.id = id;
 }
}

A Class has only One Parent Class

A class can directly extend only one other class.

Subclass

+ equals(Object): bool

+ toString() : String

Parent AnotherParent

X
C++ and Python have
multiple inheritance,
but it is complex.

Number: parent of numeric classes

 Another prodigious parent class is Number.
 Number defines methods that all numeric classes must

have, but does not implement them (abstract methods).

Number
shortValue()
intValue()
longValue()
floatValue()
doubleValue()

Short Long Float Double

BigInteger BigDecimal

Object

Integer

These methods are
abstract in Number.
This means the
subclasses are
required to
implement them

Polymorphism using Number

public void display(Number num) {

System.out.println("The value is "+num.intValue());

}

display(new Integer(10));

display(new BigDecimal(3.14159));

The value is 10

The value is 3

Question: What O-O fundamental enables display to accept a
parameter of type Integer or BigDecimal?

Inherited Methods

Object

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

class Money {

public int getValue() {...}

public boolean equals(Object)

 ...

extends
new behavior

override behavior

Inherited Methods

Object

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

Money

#clone()

equals(Object)

finalize()

getClass()

hashCode()

toString()

wait()

getValue(): int

Summary: Override vs New Method

public class Money {

public int compareTo(Money other)

}

public class Coin extends Money {

public int compareTo(Money other)

}

Override method must match the signature of the
superclass method:

What Can Override Methods Change

public class Purse {

protected List withdraw(double amount)

}

public class MyPurse extends Purse {

public ArrayList withdraw(double amount)

}

Override method can change 2 things in the signature:

(1) can be more visible than parent method

(2) return type can be a subtype of parent's return type

New Method, not Override

public class Money {

public int compareTo(Money other)

 @Override

public boolean equals(Object other)

}

public class Coin extends Money {

 public int compareTo(Coin other) // new method

 public int compareTo(Coin a, Coin b) // new method

 public boolean equals(Coin other) // new method

Any change to a method's parameters defines a new
method, not an override of parent method.

Why write @Override ?

public class Money {

 @Override // Compile-time ERROR: invalid "override"

 public boolean equals(Money other) {

 return this.value == other.value;

 }

 // Typing error: accidentally define a new method "tostring"

 // but no error from compiler because it does not have @Override

 public String tostring() {

 return "Money, money";

 }

Enables compiler to detect accidental errors.

 if you write @Override, the compiler
will warn you of misspelled "toString"

Two uses of @Override

public class Money {

 @Override

 public String toString() {

 return "some money";

 }

1. In Java 5, @Override always meant "override a method"

2. In Java 6+, @Override can also mean "implements"

public class Money implements Comparable<Money> {

 @Override

 public int compareTo(Money other) {

 . . .

 }

Cannot Override

 Constructors

 static methods
 private methods

 final methods

Subclass can define a new
method with same name.

Redefining final methods
is forbidden. Compile-time
error.

Preventing Inheritance: final class

A "final" class cannot have any subclasses.

All methods in a final class are final.

All "enum" types are final.

Final classes: String, Double, Float, Integer, ... are final.

public final class String {

...

}

Try It!

Try to define a subclass of String. What happens?

public class MyString extends String {

 public MyString(String text) {

 super(text);

 }

 // all methods are inherited

}

Prevent Overriding: final methods

 A "final" method cannot be overridden by a subclass.
 final is used for important logic that should not be changed.

public class Account {

// don't let subclasses change deposit method

public final void deposit(Money amount) {

...

 }

final method in Object?

Question:
Does Object have any final methods?

The Java API (Javadoc) will show which methods are
final.

Inheritance of Attributes

1. subclass object inherits all attributes of the parent class
(even the private ones).

 subclass cannot directly access private attributes of the
parent -- but they are still part of the object's memory!

2. subclass can shadow attributes of the parent by defining
a new attribute with the same name.

 shadow creates a new attribute having same name as
parent's attribute, but the parent's attributes are still
there (just hidden or "shadowed").

 this is rarely used -- not good design.

Inheritance of Attributes

B b1 = new B(12345, "baby")

B

protected long id

private char[] name

A

private int id
public String name

b1: B

long id = 1234567890

char [] name = { 'b','a','b','y' }

(hidden) int id = 0

(hidden) String name = "unknown"

In memory...

Inheritance and Polymorphism

How inheritance and run-time "binding" of
method names to method code enable

polymorphism

Binding of Methods to References

 Java determines which instance method should be called for a
method name at run-time.

 This is called dynamic binding or late binding.
 This means that you can't tell which actual method will be called

from only the variable type.

Object obj = "What am I?"; // obj -> String
if (Math.random() > 0.5)

 obj = new Date();

// which toString will be used?
obj.toString();

Binding a method name to code

Compile Time Binding

Compiler "binds" a method
name to code using the declared
class of the variable
 most efficient
 no polymorphism

When is this used?
 "final" methods
 "final" class
 private methods
 static methods
 constructors
 "value" types (C#: struct)

Runtime Binding

Method is invoked using the
actual type of the object.

 slower
 enables polymorphism

When is this used?
 Java: all methods except
"final", "static", or
"private"
 C#: only for virtual methods

Review Questions

Overriding Methods and access

Q: Can a subclass change the visibility of a method that it
overrides?

A: a subclass can increase the visibility of method it
overrides, but it cannot decrease the visibility.

Method in Superclass Method in Subclass
public public
protected public protected
package (default) public protected package
private anything

What visibility can you write here?

class BankAccount {
public boolean withdraw(double amount) {

....
 }
}
class CheckingAccount extends BankAccount {
 ??? boolean withdraw(double amount) {

 }

BankAccount b = new BankAccount("Mine");
BankAccount c = new CheckingAccount("Yours");
b.withdraw(100); // if this is OK
c.withdraw(100); // then will this be OK?

The Test: does polymorphism work?

Visibility in override methods

Q: Can a subclass change the visibility (access privilege)
of a method that it overrides?

 change access from "public" to "protected":

class CheckingAccount extends BankAccount {
protected void withdraw(double amount) {

if (amount > balance + overDraftLimit) {
System.out.printf(
"Error: you can withdraw at most %f Baht\

n",
balance+overDraftLimit);

return /*false*/; // cannot withdraw
}

This method is "public" in the BankAccount class.

Can you change the return type?

class BankAccount {
public boolean withdraw(double amount) {

....
 }
}
class CheckingAccount extends BankAccount {
 public ___?____ withdraw(double amount) {

 }

The Test: does polymorphism work?

Can a subclass change the return type of overridden
method?

Can you change the parameter type?

Q: Can a subclass change the type of a parameter of an
overridden method?

Example: change amount from "double" to "long":

class BankAccount {
public boolean withdraw(double amount) {...}

....
 }
}
class CheckingAccount extends BankAccount {

public boolean withdraw(_long?_ amount) { ... }

Overriding Methods: parameters

Answer: If you change the parameter type(s), then you defining
a new method, not overriding a superclass method!

If the parameter type is different then you are creating a new
method with the same name (called "method overloading").

/** test the withdraw method */
public void testWithdraw() {
CheckingAccount ca = new CheckingAccount("...");
ca.withdraw(50000);
// this calls CheckingAccount.withdraw()

ca.withdraw(25000.0);
// calls BankAccount.withdraw()

Can a subclass invoke methods from
the superclass?

Q: Can a subclass access a method of the superclass,
even though it has been overridden?

 invoke withdraw of BankAccount using "super".

class CheckingAccount extends BankAccount {
public boolean withdraw(long amount) {

if (overDraftLimit == 0)
super.withdraw(amount); // parent's method

else if (amount > balance + overDraftLimit)
System.out.printf("Error: ...");

else
balance = balance - amount;

Redefining Attributes

A subclass can declare an attribute with the same name
as an attribute in the superclass.

The subclass attribute hides the attribute from parent
class, but it still inherits it!

You can see this in BlueJ by "inspecting" an object.

public class BankAccount {
private long accountId;

}

public class SavingAccount
 extends BankAccount {

private String accountId;
}

SavingAccount has 2 id
attributes. The parent
attribute is private (not
accessible) and hidden
by its own attribute.

Redefining Attributes

The new BankAccount hierarchy is:

BankAccount

accountName
- accountId
- balance
+ getAccountID()
+ toString()
+ withdraw()

CheckingAccount
- accountId
+ withdraw() : void
+ toString() : String

SavingsAccount
- interestRate
+ toString() : String

New method to
get accountID

What does a subclass inherit?

1. Does SavingAccount have an
accountId (private in BankAccount)?

2. Does SavingAccount have a
setBranch() method?

3. Can SavingAccount define its own
deposit method?

4. Can SavingAccount define its own
homeBranch?

5. Is there any way for BankAcount to
prevent SavingAccount from overriding
the deposit method?

BankAccount

-accountId

-homeBranch
+deposit(Money)
+getBalance()
-setBranch(br)

SavingAccount

// is this allowed?
+deposit(Money)

Object References

Q1: Which of these assignments is legal?

/* 1 */
BankAccount b = new CheckingAccount("Nok");
/* 2 */
CheckingAccount c = new BankAccount("Noi");
/* 3 */
Object o = new BankAccount("Maew");
/* 4 */
BankAccount b = new Object();

Object References

Q2: What is the effect of this reassignment?

BankAccount ba;
CheckingAccount ca = new CheckingAccount("Noi");
ca.deposit(100000);
// assign to a BankAccount object
ba = ca;

What happens when "ba = ca" is executed?
1. It converts CheckingAccount object to a BankAccount object. Any extra

attributes of CheckingAccount are lost!

2. It converts CheckingAccount object to a BankAccount object. Any extra
attributes of CheckingAccount are hidden until it is cast back to a
CheckingAccount object.

3. Has no effect on the object.

4. This statement is illegal.

I Want My Checking Account!

Q3: Suppose a BankAccount reference refers to a CheckingAccount
object.
How can you assign it to a CheckingAccount?

BankAccount ba = new CheckingAccount("Jim");
CheckingAccount ca;
if (ba instanceof CheckingAccount) {
 // this is a checking account.
 ca = ??? ; // make it look like a checking acct
 how can you assign the bank account(ba) to ca ?

1. ca = ba;

2. ca = new CheckingAccount(ba);

3. ca = ba.clone();

4. ca = (CheckingAccount) ba;

5. none of the above.

Overriding equals()

 The Object class contains a public equals() method.

Q1: Does BankAccount equals() override the Object
equals() method?

/** compare two BankAccounts using ID */
public boolean equals(BankAccount other) {
if (other == null) return false;
return accountID == other.accountID;

}

Object a = new Object();
BankAccount b = new BankAccount("Joe");
if (b.equals(a))

System.out.println("Same");

Overriding equals()

 The Object class contains a public equals() method.

Q2: CheckingAccount does not have an equals method.
Which equals will be called here?

/** compare two Checking Accounts */
CheckingAccount ca1 = new CheckingAccount(...);
CheckingAccount ca2 = new CheckingAccount(...);
...
if (ca1.equals(ca2)) /* accounts are same */

1. (BankAccount)equals

2. (Object)equals

3. neither. Its an error because CheckingAccount doesn't have equals.

Homework: Binding of Methods

Homework

There are at least 3 situations where Java "binds" a
method name to an actual method at compile time (for
more efficient for execution).

> What are these situations?

> Give an example of each.

Summary of Important Concepts

Subclass has all behavior of the parent

 A subclass inherits the attributes of the superclass.

 A subclass inherits behavior of the superclass.

 Example:

Number has a longValue() method.

Double is a subclass of Number .

Therefore, Double must also have a longValue()

class Animal {

void talk() { console.print("grrrrr"); }

}

class Dog extends Animal {

void talk() { console.print("woof"); }

}

void main() {

Animal a = new Dog();

a.talk(); <--- which talk method is invoked?

}

Java

class Animal {

public void talk() { console.write("grrrrr"); }

}

class Dog : Animal {

public void talk() { console.write("woof"); }

}

void main() {

Animal a = new Dog();

a.talk(); <--- which talk method is invoked?

}

C#

class Animal {

virtual void talk() { console.write("grrrrr"); }

}

class Dog : Animal {

override void talk() { console.write("woof"); }

}

void main() {

Animal a = new Dog();

a.talk(); <--- which talk method is invoked?

}

Polymorphism in C#

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

