
Mutable and Immutable Objects
Mutate means to change. In object-oriented programming, objects from a class are mutable if they can be
changed after creation, and immutable if they cannot be changed.

For example, instances of the java.util.Date class are mutable, while Strings are immutable. This
example illustrates:

Date date = new Date(100, Calendar.JANUARY, 15); // 15 Jan 2000

String fruit = "apple banana";

System.out.println(now);

System.out.println(fruit);

now.setMonth(Calendar.MAY);

fruit.replaceAll("apple", "yogurt"); // replace apple with yogurt

System.out.println(now);

System.out.println(fruit);

When you run this code it prints:

Sat Jan 15 00:00:00 ICT 2000

apple banana

Mon May 15 00:00:00 ICT 2000

apple banana

The Date changed, but the String did not. The replaceAll() method creates a new String, but
doesn't change the existing string. In fact, none of the methods in the String class will change a String.
Try some: toUpperCase(), toLowerCase(), etc.

Some common mutable and immutable classes are:

Mutable Immutable

string values StringBuilder String

dates java.util.Date java.time.LocalDate

list java.util.ArrayList java.util.List.of(E ... element)

Exercise: list some mutable and immutable classes in the Java API.

Mutable Immutable

Exercise: for the mutable types, write a code example to prove that the objects are mutable.

Mutable and Immutable Objects - 1 - 9 March 2020

Advantages of Immutable Objects

From both a design and implementation point of view, immutable objects have some benefits:
 easier to test
 safe to share references to the same object. Hence, if an object is an attribute of another object, that

other object can safety return a reference to the attribute (no copy required).
 immutable objects are thread-safe

How Mutable Objects Can Break Encapsulation

Consider this Person class, which has a name and birthday:

public class Person {
private String name;
private Date birthday;

/** constructor for new Person objects */
public Person(String name, Date birth) {

this.name = name;
this.birthday = birth;

}
/** get the person's name */
public String getName() {

return name;
}
/** get the person's birthday */
public Date getBirthday() {

return birthday;
}
public String toString() {

return String.format("%s born on %tD", name, birthday);
}

}

Are Person objects immutable? The class does not have any mutator ("set") methods, but Person is still
mutable. Here's an example:

Date bday = new Date(55, Calendar.OCTOBER, 28);
Person bill = new Person("Bill Gates", bday);
System.out.println(bill);
// now bill.birthday references the same object as bday. What if we change bday?
bday.setYear(100);
System.out.println(bill);
// yeah! Bill just got younger.

We can fix this problem by creating a copy of the birthday parameter instead of just copying the
reference. In the constructor:

public Person(String name, Date birth) {
this.name = name;
// create a new date using data from the parameter
this.birthday = new Date(birth.getTime());

}

Mutable and Immutable Objects - 2 - 9 March 2020

But Person still has an encapsulation problem. Consider this example:

Person bill = new Person("Bill Gates", new Date(55, 9, 28));
Date birth = bill.getBirthday();
birth.setYear(0); // set birthday year to 1900
// Does this change bill's birthday?
System.out.println(bill);

getBirthday() returns a reference to the object's birthday. Now the outside code has a reference to the
birthday object and can change it (because Date is mutable).

The solution is accessor methods should not return a reference to mutable attributes. If you want to
preserve encapsulation, return a copy or immutable form of the object.

We can modify getBirthday() to preserve immutability like this:

public Date getBirthday() {
return (Date) birthday.clone();

}

This example introduces a new way to copy an object: clone(). clone creates a deep copy of the
object. Cloning can be a time-consuming operation, and its only needed for mutable classes (String is not
Cloneable since Strings are immutable). Classes that provide a working clone method will implement
the Cloneable interface. Check the Java API.

Preserving Encapsulation Of Collections

Suppose we add a Set of Email addresses to Person. We'll provide an addAddress that checks for
valid email address, and getAddresses that returns all the person's email addresses:

public class Person {
private Set<String> addresses; // email addresses
private static final String

PATTERN = "([\\w\\d]+[\\w\\d\\.]*)@((\\w\\d-)+\\.?)+";

public Person() {
addresses = new HashSet<String>();

}

public boolean addAddress(String address) {
if (address == null) return false;
if (! address.matches(PATTERN)) return false;
return addresses.add(address);

}

/** get all the email addresses */
public Set<String> getAddresses() {

return addresses;
}

Can a malicious programmer bypass the addAddress() method to modify the person's email addresses?
Yes! Since a HashSet is mutable. For example,

Set<String> emails = person.getAddresses();
emails.clear(); // remove all email addresses!

To prevent a user from serrupticiously modifying a collection, we have two choices:

Mutable and Immutable Objects - 3 - 9 March 2020

1) return a copy of the collection. If elements of the collection are mutable, you must copy each element,
too.

2) return an immutable view of the collection. This works if the elements are immutable (such as Strings).

To return an unmodifiable view of a Set use Collections.unmodifiableSet(set). For a List, use
Collections.unmodifiableList(list). These methods "wrap" a set or list in another object that blocks
(overrides) all methods that can modify the collection, such as add() and clear().

public class Person ...
/** get an unmofiable view of the email addresses */
public Set<String> getAddresses() {

return Collestions.unmodifiableSet(addresses);

}

How To Write an Immutable Class

1. Declare all attributes (fields) as private.

2. Don't provide any mutator methods.

3. If an attribute should never change (like the value of a Coin) declare it as final.

4. If any of the attributes are themselves instances of a mutable type, then create a deep copy of any
values passed as parameters to the constructor(s) instead of just copying a reference (this.foo = foo).

5. Accessor ("get") methods that return an attribute that is itself mutable should return a copy or clone of
the attribute or an immutable wrapper of the attribute.

6. Arrays are mutable, so if your class provides an accessor for an array attribute, you must copy the
entire array and return the copy. This can be expensive.

7. Most collections are mutable, so if a class provides an accessor for a collection, then return an
immutable view of the collection (as described above).

Immutable Objects in Software Design: Value Types

In designing software, if a class represents something we think of as a value, where you are interested
only in the value of the object, not its identity, then consider making it an immutable type.

Common examples of "value" objects in modeling are:

 an address

 postal code (ZIPcode)

 telephone number

 money

The benefit of doing this is that you can treat the immutable object like a value in your code. For
example, an Address represents a value. If Address is immutable, we can copy an Address between
objects using assignment, without worrying that one object might change the address.

You can get a (small) performance benefit by declaring immutable classes to be final (cannot be
subclassed), and declaring the attributes to be final, too.

Exercise: write an example of a "value" type object declared as a final class with final attributes.

Cost of Immutable Objects

Since immutable objects can't be changed, if your application does need to change the object then you
have to create a new one. An example is strings. Every time your code appends to a String it creates a
new String. Consider this loop:
Mutable and Immutable Objects - 4 - 9 March 2020

// create a String of 10,000 copies of the letter 'a'
String result = "";
int count = 10000;
while(count > 0) {

result = result + "a";
count--;

}

How many objects does this code snippet create? Every time it appends another "a" to result, it must
copy the entire string to a new string object. The old String is discarded.

This is a serious performance and memory issue for applications that build large Strings, such as web
applications. The solution is to build the string using a mutable string, then convert the result into an
immutable string.

What's a mutable String? Java has two classes: StringBuffer (which is thread-safe) and StringBuilder
(not thread-safe, but slightly faster). For the above code snippet, we'd do:

// create a String of 10,000 copies of the letter 'a'
StringBuilder buffer = new StringBuilder();
int count = 10000;
while(count > 0) {

buffer.append("a");
count--;

}
String result = buffer.toString();

Mutable/Immutable Pattern

Many applications would benefit from immutable objects, but some part of the application needs to
modify the object. For example, you'd like to make Address be immutable since its conceptually a
"value" type, but you also want to be able to modify a Person's address or build addresses from a
database.

The Mutable/Immutable Design Pattern(s) addresses this issue. See the references below.

References

"Immutable Objects". article at http://www.javapractices.com/topic/TopicAction.do?Id=29

Wikipedia, Immutable Objects.

Horstmann, Object-oriented Design and Patterns, 2E.

Mikael Grev, "Mutable/Immutable Patterns". http://www.javalobby.org/articles/immutable/index.jsp

Mutable and Immutable Objects - 5 - 9 March 2020

	Mutable and Immutable Objects
	Advantages of Immutable Objects
	How Mutable Objects Can Break Encapsulation
	Preserving Encapsulation Of Collections
	How To Write an Immutable Class
	Immutable Objects in Software Design: Value Types
	Cost of Immutable Objects
	Mutable/Immutable Pattern
	References

