

Object References

James Brucker

Example

Person a = new Person("Ant");
Person b = new Person("Nok");
System.out.println(a); // "Ant"
b = a;
a.setName("Bat");
System.out.println(a); // "Bat"

// what is printed?
System.out.println(b);

Person

-name: String

Person(name)

getName(): String

setName(name: String)

toString(): String

UML Class Diagram shows
the attributes and methods
of a class.

Variables

/* define two variables */

int x;
int y;

String s;

Memory:

x

Program:

y

A variable is a name we use to refer to a memory location.

What is stored in the memory location?

s

We will see that the answer is different for variables of primitive
data types and variables of object data types.

This is important -- know it!

Primitive Data Types are stored as values

/* define two "int"
variables */

int x;
int y;

Memory:

x

Program:

y

4 bytes

/* assign value to x */
x = 25;

x

y

25

/* assign value to y */
y = x;

x

y

25

 25

For primitive data types, the variable's memory location holds its value.

Data types for which this is true are called value data types.

Values are copied on assignment

x = 100; x

y

100

/* assign value to y */
y = 40;

x

y

100

 40

Changing the value of x does not affect the value of y.

25

Variables for Object Data Types

/* define two String
variables */

String s;

String t;

Memory:

s

Program:

t

a few bytes

For object data types, a variable is a reference to the
object, but does not store the object !!

Variables refer to the Object's location

String s;
/* create an object */
s = new String("Help,
I'm trapped in a
Computer.");

s

t

01008

To create an object you must use the "new" keyword.

This allocates new storage in a memory region called the heap.

48AC00FB
Help, I'
m trappe
d in a
Computer
.0000000
00000000

01000
01008
01010
01018
01020
01028
01030
01038

Memory:Address:

The new command creates a
new object and returns a
reference to its memory location

The object also contains other
information, such as:
 - length of string
 - the Class it belongs to

new String

Variables refer to an Object's location

/* create an object */

t = new String("Hello");

s

t

01008

Each new object gets its own storage space on the heap.

The size of the object can be anything.

48AC00FB
Help, I'
m trappe
d in a
Computer
.0000000
Hello000

01000
01008
01010
01018
01020
01028
01030
01038

Memory:Address:

The new command finds some
more free "heap" space large
enough for the String "Hello".
It creates a String object and
returns a reference to it.

01030

new String

Variables for Object Data Types (4)

// copy object reference
s = t;

s

t

01030

When you assign a value to a reference variable, you are
assigning the address of the object -- not the object's value!

48AC00FB
Help, I'
m trappe
d in a
Computer
.0000000
Hello000

01000
01008
01010
01018
01020
01028
01030
01038

Memory:Address:

Now s refers to the same object as
t ("Hello").

The old String object has no
reference ... it is garbage.

Eventually Java will reclaim the
storage space for re-use.

01030

The null value

/* discard old value */
s = null;

s

t

00000

If an object variable (object reference) doesn't refer to any
object, it is assigned a value of null. You can use this to "clear"
a reference.

48AC00FB
Help, I'
m trappe
d in a
Computer
.0000000
Hello000

01000
01008
01010
01018
01020
01028
01030
01038

Memory:Address:

Now s does not refer to
anything.

But, the old value may still
be in memory (in the
heap).

01030

Another Example: BankAccount (1)

BankAccount a;
BankAccount b;

a

b

null

Memory:

null

This creates BankAccount references, but doesn't create any
BankAccount objects.

BankAccount (2)

a = new BankAccount("George Bush", 11111);
a.deposit(200000);

a

b

Memory:

null

:BankAccount

owner="George Bush"
accountID=11111
balance=200000

UML Object Diagram notation, show the values
of one object..

Create another BankAccount

b = new BankAccount("Taksin Shinawat", 12345);
b.deposit(1000000000);

a

b

Memory:

:BankAccount

owner="Taksin Shinawat"
accountID=12345
balance=1000000000

:BankAccount

owner="George Bush"
accountID=11111
balance=200000

assign a: copy or reference?

// copy Taksin's data into the other object?
a = b;

a

b

Memory:

:BankAccount

owner="Taksin Shinawat"
accountID=12345
balance=1000000000

:BankAccount

owner="George Bush"
accountID=11111
balance=200000

No copy! It makes a "point
to" the same object as b.

Who's Got the Money?

// copy Taksin's data into the other object?
a = b;
a.setOwner("Donald Trump");

a

b

Memory:

:BankAccount

owner="Donald Trump"
accountID=12345
balance=1000000000

:BankAccount

owner="George Bush"
accountID=11111
balance=200000

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

