

Polymorphism

Polymorphism

Object x = null;

x = new Double(3.14);

x.toString(); // calls toString() of Double class

x = new Date();

x.toString(); // calls toString() of Date class

Polymorphism

We can invoke a behavior (method) without knowing
what kind of object will perform the behavior.

Many kinds of objects can perform the same behavior.

Poly - morph = many forms

How does println() work?

System.out.println(Object x) can print any kind
of object.

Even object types we define ourselves (like Student).

How is it possible for one method to print any kind of object?

Object x = new Something();
System.out.println(x); // prints String form of x

any kind of Object

println() uses Polymorphism

println(x) calls x.toString().

println(x) doesn't know the type of object that x refers to.

Using polymorphism, x.toString() always invokes
toString() of the correct class.

Object x = new Date();
System.out.println(x); // calls x.toString()

// invokes toString of Date class

x = new Student("Bill Gates");
System.out.println(x);

// invokes toString of Student class

Enabling Polymorphism

The key to polymorphism asking an object to do
something (call its method) without knowing the kind of
object.

Object a = .?.;

a.toString();

a.run();

How can we invoke an object's method without
knowing what class it belongs to?

This is an error. a might not
have a "run" method. Why?

a.toString() always works for any
kind of object. Why?

Enabling Polymorphism

The compiler has to "know" that x will always have the
requested method... regardless of the actual type of x.

 x.run() // huh? Does x have a run()?

 We must guarantee that different kinds of objects will
have the method we want to invoke.

Two Ways to Enable Polymorphism

In Java there are two ways to "guarantee" that a class
has some behavior (method):

1. Inheritance

If a superclass has a method, then all its subclasses
are guaranteed to have the method, too.

Subclasses can use the parent's method, or override it
with their own implementation.

2. Interface

An interface specifies one or more methods.

A class that implements an interface must have the
method(s) of the interface.

Inheritance and Polymorphism
Every class is a subclass of Object.

Therefore, every object is guaranteed to have all the
methods from the Object class.

Object
equals(Object): boolean
toString(): String
 ...

Every object is
guaranteed to have
equals(Object) and
toString() methods.

We can invoke them for
any kind of object. X

equals(Object): boolean
toString(): String
 ...

Methods from Object

Every Java class is a subclass of the Object class.

Therefore, every object has the public methods from Object.

Usually, classes will override these methods to provide useful
implementations.

Object
equals(Object): boolean
getClass(): Class
hashCode(): int
toString(): String
notify()
wait()
...

Every class inherits
these methods
automatically.

So, we can always use
obj.toString() or
obj.equals(obj2)

for any kind of object.

Interface

Interface is a specification for some required behavior,
without an implementation.

A Java interface specifies behavior which will be provided
by classes that implement the interface.

Example: USB interface specifies (a) connector size, (b)
electrical properties, (c) communications protocol, ...

Anyone can implement the USB interface on their device.

 We can use any USB port the same way, without
knowing the actual type (manufacturer) of the device.

java.lang.Runnable interface

public interface Runnable {

 /**

 * The method to invoke. It doesn't

 * return anything.

 * @see java.lang.Runnable#run()

 */

 public void run();

}

abstract method = method signature only, no
implementation

Runnable example

public class MyTask implements Runnable {

 /** The required method. */

 public void run() {

 System.out.println("I'm running!");

 }

}

Declare that this class has the run() behavior.

Implement the required method.

Use the interface in an app

public class TaskRunner {
/**

 * Run a task n times.
 * @param task a Runnable to perform
 * @param count number of time to do it.
 */
public void repeat(Runnable task, int count)

 {
 while(count > 0) {
 task.run();
 count--;
 }
 }

Example: print message 5 times

TaskRunner runner = new TaskRunner();
Runnable mytask = new MyTask();

runner.repeat(mytask, 5);

I'm running.
I'm running.
I'm running.
I'm running.
I'm running.

How does Interface enable Polymorphism?

We can define many tasks that implement Runnable.

TaskRunner can use any task without knowing its type.
Every task is guaranteed to have a run() method.

Runnable task = null;
if (time < 1700) task = new StudyTask();
else task = new PlayTask();
runner.repeat(task, 3);

UML for interface

UML class diagram for this example.

Notice that TaskRunner does not depend on MyTask.

Make MyTask more flexible

public class MyTask implements Runnable {

 ???

 /** @see java.lang.Runnable#run() */

 public void run() {

 System.out.println("_โฆษณาทททนทท: 02-9428555_");
 }

}

Modify MyTask so we can use it to print any message.

Solution

public class MyTask implements Runnable {

 private String message;

 /** @param message is the message to print */

 public MyTask(String message) {

 this.message = message;

 }

 /** @see java.lang.Runnable#run() */

 public void run() {

 System.out.println(message);

 }

}

Modify MyTask so we can use it to print any message.

Summary

Polymorphism in OOP means that many kinds of

objects can provide the same behavior (method),

and we can invoke that behavior without

knowing which kind of object will perform it.

Enabling Polymorphism

To use polymorphism, we must guarantee that the object
x refers to has the method we want to invoke.

x.toString() // x must have a toString method

 How can we guarantee this??

1. Use inheritance: a subclass has all the methods of its
superclass.

2. Use an Interface: an interface specifies a required
behavior without implementing it.

Every class that implements the interface must provide
the interface's behavior.

Don't ask "what type?"

With polymorphism, we can invoke a behavior without
knowing the type (class) of object that will perform the
behavior. We don't test for the type of object.

So, polymorphism has the nickname:

Don't ask "what type"

Anti-polymorphism example:

public void repeat(Object task, int count) {
 if (task instanceof MyTask) {
 MyTask my = (MyTask) task;
 while(count-- > 0) my.run();
 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

