

Decorator Pattern

Context: We want to enhance the behavior of a class, without
making the class more complicated.

The enhanced class can be used the same as the base class.

Solution: A base class or interface defines the required behavior.
Create a decorator that implements the base interface and wraps
an instance of the plain class, "decorating" its behavior.

PlainComponent

operation()

BaseComponent

 operation()

Decorator

operation()

moreBehavior()

calls

Decorator Example

Context: We want to add Scroll Bars to different graphical
components. We don't want duplicate code for Scroll Bars

Solution: Component is the base class for all components.
ScrollPane "wraps" any component and adds scroll bars to it.

 We can "wrap" any component with a Scroll Pane and the
component behaves the same, but has scroll bars

ScrollPane

component: Component

ScrollPane(component)

Component

+ paint(g: Graphics)
...other methods...

Button

+paint(g: Graphics)
...

TextComponent

+paint(g: Graphics)
...

Decorator Example

Purpose: create a TextArea with scrollbars so that text
will scroll when larger than the viewport.

// a TextArea with 5 rows and 40 columns
JTextArea textArea = new JTextArea(5, 40);

// decorate with JScrollPane to add scrollbars
JScrollPane pane = new JScrollPane(textArea);
pane.setVerticalScrollBarPolicy(

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);

// Add the decorated component to the window
// *instead of* the original textArea
window.add(pane);

Advantage of Using Decorators (1)

 We can write the decorator behavior one time and
apply it to many different kinds of objects.

Example: a JScrollPane can be applied to any kind of
Component, even buttons!

Advantage of Using Decorators (2)

 Improves the cohesion of objects, by not adding extra
responsibility that isn't part of the object's main
purpose.

Example: the purpose of a TextArea is to display text!

Not to manage scroll bars.

Advantage of Using Decorators (3)

 New decorators can be added in the future, extending
the behavior of the class.

Example: a zoom decorator to zoom a component.

Open-Closed Principle

A class should be open for extension but closed for
modification.

Disadvantage of Decorators

Lots of pass-through methods

Any method the decorator doesn't "decorate" itself, it
must pass to the decorated object.

Class Decorator?

Usually a Decorator encapsulates another instance of the base type,
and calls its methods. This is composition.

But, if you only want to decorate a single base type you could define
the decorator as a subclass that directly uses the superclass.

That means you create a Decorator object instead of creating a
base type object.

PlainComponent

operation()

BaseComponent

 operation()

DecoratedComponent

operation()

moreBehavior()

GuessingGame Decorator

A GuessingGameWithPrint class that
extends the Guessing Game class.

GuessingGameWithPrint overrides the
guess() method to print the guess,
call the superclass guess(), and
return value (true or false).

Other methods it simply inherits from
GuessingGame.

GuessingGameWithPrint

(constructors)

guess(value): boolean

GuessingGame

guess(value): boolean

getCount()

getMessage()

getUpperBound(): int

Example Code
class GuessingGameWithPrint
 extends GuessingGame {
 // must provide all required constructors
 public GuessingGameWithPrint() {
 super();
 }
 public GuessingGameWithPrint(int bound) {
 super(bound);
 }
 public boolean guess(int value) {
 boolean result = super.guess(value);
 System.out.printf("guess(%d) is %b\n",
 value, return);
 return result;
 }

System.out.printf()

printf prints a formatted string with data.

Syntax:

 printf(format, arg1, arg2, ...)

Example:

 printf("Hello %s, the day is %d\n", "Nok", 22);

 Hello Nok, the day is 22

See:

https://dzone.com/articles/java-string-format-examples

Python Function Decorator

Context: We want to see each time a function is called and what
the function returns.

Forces: We don't want to modify the code (add "print" statements),
and a debugger is too cumbersome & slow.

Solution: Wrap the function in another function that prints each time
it is called.

def decorate(fun):
 """fun is a function to decorate."""
 def new_fun(*args, **kwargs):
 s = ", ".join(str(arg) for arg in args)
 print(f"{fun.__name__}({s})")
 return fun(*args, **kwargs)
 return new_fun

f = decorate(fibonacci) # decorate fibonacci

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

