

Design Patterns in Swing and AWT

 Strategy Pattern: LayoutManagers are Strategies

 Observer Pattern: event listeners are observers

 Composite Pattern: a container can be placed inside
another container just like any component

 Decorator Pattern: you can "decorate" any component
by using JScrollPane to add scroll bars

 MVC Pattern: JTable gets data from a TableModel

 Command Pattern: Action objects are commands that are
invoked by components (like JButton). The Invoker, the
Command, and Receiver (your application logic) are all
separate.

LayoutManager - what pattern?

LayoutManager is a Strategy

Strategy Pattern

Name in Pattern Name in this Example

Content Container

Strategy LayoutManager

Concrete Strategy FlowLayout, GridBagLayout, ..

setStrategy setLayout(LayoutManager)

doWork() layoutContainer()

Benefit of LayoutManager

 What are the benefits of separating LayoutManager
from the container classes?

Why don't we put the layout code inside each
container?

Observer Pattern

Name In Observer Pattern Name in Swing graphics

Subject

Observer

Concrete Observer

attach()

notify()

Observer Pattern

Name In Observer Pattern Name in Swing graphics

Subject JButton, JMenuItem, JCheckBox

Observer ActionListener

Concrete Observer your class implementing ActionListener

attach() addActionListener(observer)

notify() actionPerformed()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

