
Design Patterns

James Brucker

Reusable Solutions

All engineering disciplines reuse proven good solutions

Civil Engineer

standard designs and construction methods based on
experience

Circuit Designer

reuse component designs in integrated circuits

Architect

reuse design patterns in home and building design

Reusable Ideas in Software

Developers reuse knowledge, experience, & code

Application Level

reuse the design & code of a similar project

Design Level

apply known design principles and design patterns

Logic Level

apply known algorithms to implement behavior

Method Implementation (Coding) Level

use programming idioms for common tasks

A Programming Idiom

Problem: apply a function to every element in a list

Idiom:
1. Need result as a list? Use a list comprehension.

 2. Will result be processed further?
 Are there many values?
 Consider map instead:

 map(f, mylist)

result = [f(x) for x in mylist]

An Algorithm

Problem:

find the shortest path from node A to node B in a graph

Solution:

apply Dykstra's Shortest Path algorithm

Reusable Code

Requirement:

Sort a List of Persons by last name, ignoring case.

Solution:

Use sorted(iterable, key=function)

people = [Person("Joseph","Biden", ...),

 Person("Prayut","Chan-o-cha", ...),

 Person("Jing Ping", "Xi", ...)

]

sorted(people, key=lambda p: p.last_name)

Libraries of reusable code

Requirement:

Download data from the Internet in JSON format, and
convert it to a dictionary of key-values.

Solution:

Use the requests package. (pip install requests)

"""Get info about a github user."""

import requests

url = f"https://api.github.com/users/{username}"

response = requests.get(url)

parse the response, same as json.loads(response.text)

data = response.json()

print(data)

What is a Design Pattern?

 A situation that occurs over and over,

along with a reusable design of a solution.

Format for Describing a Pattern

Pattern Name: Iterator

Context

We need to access elements of a collection or data src.

Motivation (Forces)

We want to access each element of a collection without
knowing the underlying structure of the collection.

Solution

Each collection provides an iterator with a method to get the
next element.

Consequences

Application is not coupled to any specific kind of collection.
Our code can work with any collection that provides an
iterator.

UML Diagram for Iterator

<<interface>>
Iterator<T>

hasNext(): bool
next(): T

ConcreteIterator

hasNext(): bool
next(): T

implements

Interface

Interface = specifies behavior (method signatures) but
not an implementation of the behavior.

Example:

USB Interface specifies how a USB connection should
behave.
Any manufacturer of USB devices can implement the
USB interface, according to the specification.

USB devices from different manufacturers can inter-
operate if they conform to the same specification.

Python 'Type' as Interface

Python defines "types" for Iterator & Iterable in
package collections.abc

https://docs.python.org/3/library/collections.abc.html#c
ollections-abstract-base-classes

Annoyance

These types were defined in the typing package (which
made sense!) but have been deprecated and replaced
by types in collections.abc package.

<<type>>
Iterator[T]

__next__(): T

Diagram for Iterator

<<interface>>
Iterator<T>

hasNext(): bool
next(): T

ConcreteIterator

hasNext(): bool
next(): T

Iterator[T]

__next__(): T

ConcreteIterator

__next__(): T

In PythonIn the Design Pattern

implements provides

Examples of Iterator

What Iterators have you used?
 In Python you rarely use iterators directly, but you

can.

>>> fruit = ["Apple", "Banana", "Durian", ...]
>>> it = iter(fruit) # creates an iterator

>>> next(it)
'Apple'
>>> next(it)
'Banana'
>>> next(it)
'Durian'

Iterator in Python

collections.abc.Iterator - abstract base class

Since Python 3.9, this ABC accepts type parameter:

Iterator[date] = an iterator for date objects.

Example: a Calendar class provides iterators for
Events in your calendar:

class Calendar(Iterator[Event])

How do you Get an Iterator?

Context:

 We want to create an Iterator without depending on
the API for a particular collection or data source.

Forces:

 We don't want the code to be coupled to a particular
collection type. We want to always create iterators in
the same way for any collection.

Solution: Define a Factory Method

<<interface>>
Iterator<T>

hasNext(): bool
next(): T

ConcreteIterator

<<interface>>
Iterable<T>

iterator():
 Iterator<T>

Collection

iterator()

creates

creates

Define a method iterator() that creates an Iterator.

implementsimplements

Iterable in Python

Iterator[T]
__next__(): T

MyIterator

<<factory>>
Iterable[T]

__iter__():
 Iterator[T]

MyCollection

__iter__()

creates

creates

In Python, an Iterable has a __iter__ method that returns an
Iterator.

providesprovides

What Uses an Iterable?

Anything that is Iterable or Iterator can be used as the data
source in a "for" loop, list comprehension, or map.

for loop:

for x in iterable:

list comprehension

[f(x) for x in iterable if condition(x)]

map function:

map(function, iterable)

builtin functions:

max(iterable), min(iterable),

sum(iterable), any(iterable), ...

Benefit: Polymorphism & Code Reuse

The benefit of Iterable is that this built-in code will work with
any Iterable object -- even objects the programmer defines.

for x in iterable:

[f(x) for x in iterable if condition(x)]

map(function, iterable)

max(iterable), min(iterable),

sum(iterable), any(iterable), ...

What objects are Iterable?
list

set

dict (iterator over keys)

file: file = open("somefile.txt"). Iterator returns lines

strings, Generators, Maps

Are strings really iterable??
>>> s = "hello there"

>>> iterator = iter(s)

>>> next(iterator)

'h'

...

Python Iterator is Unusual

In Python, Iterable is a subtype of Iterator

Iterators can create new iterators.
Just call iter(iterator)

Example

In the Wallet app, we want a way to view (but not modify)
what is in the wallet.

Solution:

 Provide an __iter__ method that returns an iterator
over the Enrollments in our CourseList.

Benefit:

 Apps don't need to know the internal structure of the
wallet. They use the standard Iterator interface.

Example Code

from collections.abc import Iterable # Python 3.9

class CourseList(Iterable[Enrollment]):

 def __init__(self):

 """Initialize an empty courselist."""

 self._enrollments = []

 def __iter__(self) -> Iterator[Enrollment]:

 """Return an iterator for enrollments"""

 return iter(self._enrollments)

List is Iterable, so we use iter(list) to create an iterator.

Using the Iterator

mycourselist = CourseList()

mycourselist.enroll(Course("01219116",...))

mycourselist.enroll(Course("01219244",...))

mycourselist.enroll(...)

show what we have enrolled

for enrollment in mycourselist:

 print(enrollment)

how many credits?

sum(e.course.credits for e in mycourselist)

Learn Design Patterns on the Web

Many good resources!

https://refactoring.guru/design-patterns

 Examples use pseudo-code (similar to Java)

Game Programming Patterns

 https://gameprogrammingpatterns.com/contents.html

 Uses C++ for examples.

 The explanations are not so good (in my opinion).

Good Design Patterns Books

Good for Java programmers

Design Patterns Explained, 2E (2004)
by Allan Shallow & James Trott

also wrote: Pattern Oriented Design.

Head First Design Patterns (2020, 2004)
by Eric & Elizabeth Freeman

Visual & memorable examples,
code is too simple.

The Classic "Gang of Four" book

The "Gang of Four"

The first book to popularize the idea of software patterns:

Gamma, Helm, Johnson, Vlissides
Design Patterns: Elements of Reusable Object-
Oriented Software. (1995)

Structure of Design Patterns in
Gang of Four book

Name of Pattern

Intent

what the pattern does.

Motivation

Why this pattern. When to apply this pattern

Structure
Logical structure of the pattern. UML diagrams.

Participants and Collaborators

What are the elements of the pattern? What do they do?

Consequences
The benefits and disadvantages of using the pattern.

Design Patterns To Know

1. Iterator

2. Adapter

3. Factory Method

4. Decorator

5. Singleton

6. Strategy - Layout Manager, used in a Container

7. State

8. Command

9. Observer

10. Facade

SKE Favorite Design Patterns

I asked SKE12 Software Spec & Design class:

"What patterns are most instructive or most useful?"

SKE12 Favorite Patterns
Pattern Votes

MVC 18

State 17

Factory Method 16

Command 15

Strategy 15

Facade 12

Singleton 12

Iterator 11

Observer 11

Adapter 8

Decorator 4

Template Method 3

Categories of Patterns

Creational - how to create objects

Structural - relationships between objects

Behavioral - how to implement some behavior

Situations (Context) not Patterns

Learn the situation and the motivation (forces) that
motivate the solution.

Pay attention to Applicability for details of context
where the pattern applies.

(Avoid applying the wrong pattern.)

Adding New Behavior

Situation:

we want to add some new behavior to an existing
class

Forces:

1. don't want to add more responsibility to the class

2. the behavior may apply to similar classes, too

Example:

Scrollbars

Changing the Interface

Situation:

we want to use a class in an application that requires
interface A. But the class doesn't implement A.

Forces:

1. not appropriate to modify the existing class for the
new application

2. we may have many classes we need to modify

Example:

change an Enumeration to look like an Iterator

Convenient Implementation

Situation:

some interfaces require implementing a lot of
methods. But most of the methods aren't usually
required.

Forces:

1. how can we make it easier to implement interface?

2. how to supply default implementations for methods?

Example:

MouseListener (6 methods), List (24 methods)

A Group of Objects act as One

Situation:

we want to be able to use a Group of objects in an
application, and

the application can treat the whole group like a single
object.

Forces:

There are many objects that behave similarly. To avoid
complex code we'd like to treat as one object.

Example:

KeyPad in a mobile phone app.

Creating Objects without Knowing
Type

Situation:

we are using a framework like OCSF.

the framework needs to create objects.

how can we change the type of object that the
framework creates?

Forces:

1. want the framework to be extensible.

2. using "new" means coupling between the class and
the framework.

Example:

JDBC (Java Database Connection) creates
connections for different kinds of databases.

Do Something Later

Situation:

we want to run a task at a given time (in the future)

Forces:

we don't want our "task" to be responsible for the
schedule of when it gets run.

This situation occurs a lot, so we need a reusable
solution.

Example:

 We're writing a digital clock. We want an alarm to
sound at a specified time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

