

Observer Pattern

Context:

An object (Subject) is the source of events.
Other objects (Observers) want to know when an
event occurs.

Or several objects should be immediately updated
when the state of one object changes, e.g. an editor
with live preview.

Forces:

We don't want the observers to poll for changes, which
is inefficient.

We don't want to complicate the Subject with a lot of
code for event notification.

Example

Students using Google Classroom want to be notified when there
is something new in one of their classes.

A new assignment is an "event". Google Classroom notifies
interested Observers. Each observer can choose how he/she
wants to be notified.

Observer Pattern

Solution:

(1) Subject provides a method for Observer to register
itself as wanting to receive event notification.

(2) Subject calls a method to indicate that an event
has occurred.

(3) To avoid complicating the subject, implement the
registration and event notification code in a separate
class.

This can be a superclass of the Subject, or another
class that the Subject uses (delegate to it).

UML for Observer Pattern
(1) Subject provides a method for Observers to register themselves

as wanting to be notified of events. Method: addObserver()

(2) Each Observer implements a known method (notify) for the
Subject to invoke when an event occurs.

ObservableSubject

- observers: Collection

+addObserver(Observer)

+removeObserver(...)

Observer

+notify(event: Object)
...

ConcreteObserver

+notify(event)
...

AnotheObserver

+notify(event)
...

What are some examples of the Observer Pattern?

ConcreteSubject

Button uses Observer

Subject: Button is the source of events.

Event: button press (an ActionEvent)

Observer: any object that want to know when the button
is pressed.

How to implement:

1. Observer implements EventHandler, and defines a
handle() method to receive notificatoins.

2. Observer registers itself by calling
button.addEventHandler() or button.setOnAction()

Button Observers

/** An observer that counts button presses */
public class ClickCounter
 implements EventHandler<ActionEvent> {
 private int count = 0;

 /** The event notification method. */
 public void handle(ActionEvent evt) {
 count += 1;
 System.out.println("Click number "+count);
 }
 public int getClickCount() { return count; }
}

This observer counts button presses.

Register the Observer

Button button = new Button("Press Me");

ClickCounter counter = new ClickCounter();

// register the observer
button.addEventHandler(ActionEvent.ACTION,
 counter);

We must add ClickCounter as an observer of the Button.
This is called registering an observer.

Benefits of using Observers

1. Button is not coupled to the actual observer classes.

Button depends only on the interface for observers.

2. We can define and add new observers any time (extensible).

3. We can reuse the same observer for many components.

Table for Identifying a Pattern

Name In Pattern
Name in Application:

this is for a Button

Subject Button

Observer EventHandler

Concrete Observer a class that implements EventHandler

addObserver(Observer) addEventHandler() or setOnAction(this)

notify(Event) [in the observer] handle(ActionEvent)

notifyObservers [in Subject] fireEvent(ActionEvent)

Adding Observers to your App

How can we use the Observer Pattern in our code?

Example: A UI for coin purse that tells us what the
balance is.

Observer Pattern in Java

Java provides an Observable class and Observer interface that
make it easy to use the Observer pattern..

YourApplication

-event()

...

Observer

+update(Observable, Object)

YourObserver

+update(observable, event)
...

Observable

- observers: Collection
+addObserver(Observer)
+deleteObserver(...)
+notifyObservers(Object)

addObserver(this)

void event() {
 setChanged();
 notifyObservers(obj);

Using the Observable class

public class Purse extends Observable
{
 /** An event the observers want to know about */

public boolen insert(Valuable money) {
 doSomeWork();
 // now notify the observers
 setChanged();
 notifyObservers(); // can include a parameter

}

(1) Declare that your Subject class extends Observable

(2) When an event or change occurs, invoke setChanged()
and notifyObservers()

Writing an Observer

public class MyObserver implements Observer {
 /* This method receives notification from the

 * subject (Observable) when something happens
 * @param subject Observable that caused notif.

 * @param message is value of parameter sent
 * by subject. May be null.
 */
public void update(Observable subject,
 Object message) {
 purse = (Purse)subject;
 ...

}

(3) Declare that observers implement the Observer
interface.

(4) update receives notifications from
the Observable Subject.

Last Step: add Observers to Subject

public static void main(String [] args) {
 Purse subject = new Purse();//Observable
 MyObserver observer = new MyObserver();

subject.addObserver(observer);

subject.run();
}

Call addObserver() to register the Observers with
subject.

Example for Coin Purse

Purseinsert(Money)

withdraw(amt)

GUI observers Observable

notifyObservers()

extends

What are the interesting events?

Purse with observer notification

The purse should notify observers when the state of the
purse changes.

Draw a sequence diagram of what happens, using
insert() as example.

C# Delegates as Observers

 Delegate is a type in the C# type system.
 It describes a group of functions with same parameters.
 Delegate can act as a collection for observers.

/** define a delegate that accepts a string **/
public delegate void WriteTo(string msg);

/** create some delegates **/
WriteTo observers = new WriteTo(out.WriteLine);
observers += new WriteTo(button.setText);
observers += new WriteTo(textarea.append);
/** call all the observers at once! **/
observers("Wake Up!");

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

