Singleton Pattern

Pattern Name: Singleton Pattern

Context

We want to ensure there is only one instance of a class.
All parts of the application should share this single instance.

Motivation (Forces)

Several objects need to access the same resource, or we want
objects to share a resource that is "expensive". Many parts of the
program need to access this shared resource.

Solution
Prevent direct instantiation by making the constructor private.

Provide a static accessor method that always returns the same
instance of this class (same object).

Singleton Pattern

Singleton

Single instance of this class-------- *» | - instance: Singleton

<<constructor>>

- Singleton()

Static accessor for instance-------- » | + getinstance() : Singleton
+ other methods for the

object's behavior

Singleton Pattern

Singleton has 3 elements:

(1) private static attribute
that is the only instance of
this class

(2) constructor is private to
prevent other classes from
creating objects

(3) public static accessor
returns the single instance
of this class.

Singleton

- instance: Singleton

<<constructor>>
- Singleton()
+ getinstance() : Singleton

Example of Singleton Pattern

A Store that has only one instance.

public class Store {
// (1) the single static instance

private static Store theStore = null;
private List<Transaction> transactions;
// (2) private constructor

private Store() {
transactions = new ArraylList<Transaction>();

}

// (3) static accessor method also creates singleton
public static Store getInstance () ({

if (theStore == null) theStore = new Store();
return theStore;

lazy instantiation

Lazy Instantiation

Means that you create a resource only when it is needed.

This avoids creating something that may never be used.

// (3) static accessor method creates the singleton

public static Store getInstance() ({
1f (theStore == null) theStore = new Store();

return theStore;
}

\

The store instance is created the first
time that getInstance() is called, but
not before.

If getInstance is never called, no Store
is created.

Getting the Singleton object

How do other objects get the Store?

// in your application use:

Store store = Store.getInstance();

Lazy Instantiation of Loggers

Using Log4J you will see a lot of code like this:

// Create the logger for this class
private static Logger log = Logger.getlLogger(...)

What if this class never logs any messages?
We wasted time and memory creating the logger.
So many apps use /azy instantiation:

// Don't create logger yet
private static Logger log = null;

private static Logger getLogger () {
if (log == null) log = Logger.getlLogger(...)

return log;

Eager Instantiation

Eager instantiation means to create the object as early as
possible.

Eager instantiation is used in cases such as:

* you want objects created during start-up, either so the
application will "fail early" if object can't be created,
or to avoid delay while app is running (e.g. a game
needs to create a bunch of sprites while running).

public class Store {
// eager instantiation: create instance when
// the class is loaded into memory.
private static final Store theStore =
new Store() ;

Consequences of Using Singleton

Benefits
J control access to a single instance

D reduce name space pollution - better than using a
global variable (in languages with global variables)

J permits a variable number of instances - you can modify
the singleton to produce more than one instance, w/o

changing other parts of application

Disadvantages

2 Singleton cannot be subclassed, since the constructor
IS private and static getlnstance() is not polymorphic.

Related patterns

2 Factory Method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

