

Singleton Pattern

Pattern Name: Singleton Pattern

Context

We want to ensure there is only one instance of a class.
All parts of the application should share this single instance.

Motivation (Forces)

Several objects need to access the same resource, or we want
objects to share a resource that is "expensive". Many parts of the
program need to access this shared resource.

Solution

Prevent direct instantiation by making the constructor private.

Provide a static accessor method that always returns the same
instance of this class (same object).

Singleton Pattern

1

Singleton

- instance: Singleton

<<constructor>>

- Singleton()

+ getInstance() : Singleton

+ other methods for the

object's behavior

Single instance of this class

Static accessor for instance

Singleton Pattern

Singleton

- instance: Singleton

<<constructor>>

- Singleton()

+ getInstance() : Singleton

(1) private static attribute
that is the only instance of
this class

(2) constructor is private to
prevent other classes from
creating objects

Singleton has 3 elements:

(3) public static accessor
returns the single instance
of this class.

Example of Singleton Pattern

A Store that has only one instance.

public class Store {
// (1) the single static instance

private static Store theStore = null;
private List<Transaction> transactions;

// (2) private constructor
private Store() {

transactions = new ArrayList<Transaction>();
}

// (3) static accessor method also creates singleton
public static Store getInstance() {

if (theStore == null) theStore = new Store();
return theStore;

} lazy instantiation

Lazy Instantiation

Means that you create a resource only when it is needed.

This avoids creating something that may never be used.

// (3) static accessor method creates the singleton
public static Store getInstance() {

if (theStore == null) theStore = new Store();
return theStore;

}

The store instance is created the first
time that getInstance() is called, but
not before.

If getInstance is never called, no Store
is created.

Getting the Singleton object

// in your application use:

Store store = Store.getInstance();

How do other objects get the Store?

Lazy Instantiation of Loggers

Using Log4J you will see a lot of code like this:

// Create the logger for this class
private static Logger log = Logger.getLogger(...);

What if this class never logs any messages?

We wasted time and memory creating the logger.

So many apps use lazy instantiation:

// Don't create logger yet
private static Logger log = null;

private static Logger getLogger() {
if (log == null) log = Logger.getLogger(...);
return log;

}

Eager Instantiation

Eager instantiation means to create the object as early as
possible.

Eager instantiation is used in cases such as:
 you want objects created during start-up, either so the

application will "fail early" if object can't be created,
or to avoid delay while app is running (e.g. a game
needs to create a bunch of sprites while running).

public class Store {
 // eager instantiation: create instance when
 // the class is loaded into memory.
 private static final Store theStore =
 new Store();

Consequences of Using Singleton

Benefits
 control access to a single instance
 reduce name space pollution - better than using a

global variable (in languages with global variables)
 permits a variable number of instances - you can modify

the singleton to produce more than one instance, w/o
changing other parts of application

Disadvantages
 Singleton cannot be subclassed, since the constructor

is private and static getInstance() is not polymorphic.

Related patterns
 Factory Method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

