

Strategy Pattern

Context: A class requires some behavior, but there are many ways
that this behavior can be implemented.

Solution: implement the behavior in a separate class, called the
Strategy.

Create a Strategy interface to de-couple the context class from
the Strategy. Delegate the task to the strategy.

Context

- strategy: Strategy

+setStrategy(Strategy)

<<interface>>
Strategy

+doSomething(Context)
...

ConcreteStrategy

+doSomething()
...

AnotherStrategy

+doSomething()
...

What are some
examples of this?

Container uses Strategy Pattern

Context: Swing container.

Strategy: LayoutManager.

Create a Strategy interface to de-couple the context class from
the Strategy.

Container

- strategy: LayoutManager

+add(Component)

+setLayout(LayoutManager
)

<<interface>>
LayoutManager

+layoutContainer(Container)
...

BorderLayout

+layoutContainer()
...

FlowLayout

+layoutContainer()
...

What are some
examples of this?

Using the Strategy Pattern

(1) The application creates a concrete strategy and assigns it to the
context.

(2) The context delegates some work to the Strategy.

: Context

Strategy

cs : ConcreteStrategy
create

setStategy(cs)

doSomething()
doSomething(context)

Strategy Pattern for Coin Purse

Context: A coin purse must decide what coins to withdraw; there
are many ways to do this and we may want to change strategies.

Solution: Separate the withdraw() method from the Purse.
Define a WithdrawStrategy interface for the withdraw operation,
and modify the purse to delegate the withdraw operation to a
concrete instance of WithdrawStrategy.

CoinPurse

- strategy: WithdrawStrategy

+setWithdrawStrategy(ws)

+withdraw(amount)

WithdrawStrategy

+withdraw(context, amount)

GreedyWithdraw

+withdraw()
...

RecursiveWithdraw

+withdraw()
...

Strategy needs access to Context

To do its job, the Strategy usually needs a reference to
the Context or some data of the Context.

LayoutManager

layoutContainer(Container c)

Container

setlayout(LayoutManager lm)

Context: AWT/Swing
Container (JPanel ...) contains
components.

Strategy: A LayoutManager
arranges and resizes
components.

LayoutManger needs a
reference to Container to get
size and list of Components. BorderLayout

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

