

Recursion

James Brucker

What is Recursion?

Recursion means for a function or method to call itself.

A typical example of this is computing factorials:

n! = n * (n-1)!
Using recursion, we can compute n! like this:

n *

 (n-1)*

 (n-2)*

 (n-3)*

 ... *

 = 1

(n-1)!
(n-2)!

(n-3)!

(1)!

Recursive factorial(n)

We can write a function that computes factorials by
calling itself to compute factorial of a smaller number:

long factorial(int n) {
if (n <= 1) return 1;
return n * factorial(n-1);

}

Suppose we call this function to compute factorial(4).
What statements will be executed?

factorial(n) execution trace

long result = factorial(4);

factorial(4) {
return 4 * factorial(3);

}

factorial(3) {
return 3 * factorial(2);

}

factorial(2) {
return 2 * factorial(1);

}

factorial(1) {
if (1 <= 1) return 1;

}

call

call

call

factorial(n) return trace

long result = factorial(4);

factorial(4) {
return 4 * factorial(3);

}

factorial(3) {
return 3 * factorial(2);

}

factorial(2) {
return 2 * factorial(1);

}

factorial(1) {
if (1 <= 1) return 1;

}

return 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24call

call

 = 24

Important Feature of Recursion

Recursion must guarantee to stop eventually (no infinite calls)

Recursion should not change any state variable that other
levels of recursion will use, except by design.

long factorial(long n) {
if (n <= 1) return 1;
return n * factorial(n-1);

}

This test (n <= 1)
guarantees that
factorial() will
eventual stop using
recursion.

long factorial(long n) {
if (n == 1) return 1;
return n * factorial(n-1);

}

What happens if
factorial(0) is called?

Wrong:

Base Case

The case where recursion stops is called the base case.

factorial(n): base case is n == 1

but you should also test for n < 0

Recursive Sum

long sum(int n) - compute sum of 1 to n

Recursion: n + { sum of 1 to n-1 }

Base Case: sum(1) or sum(0)

Code for recursive sum

Complete this code

/**
 * Sum integers 1 to n.
 * @param n largest number to sum, must be
positive.
 * @return the sum
 */
static long sum(int n) {
 // base case
 if (n <= 0) return 0;
 // recursive case
 return ______?_______; //what should go here?
}

Designing Recursion

1) Discover a pattern for recursion:
 solve a small problem by hand
 observe how you break down the problem

2) Recursion should provide insight and simplify the
problem.

 Example: recursive sum does not provide insight.
Easier and more efficient to use a loop.

3) Determine the base case when recursion stops.

4) Termination: What can you test to guarantee
recursion will stop?

Designing Recursion Example

sum(n) = 1 + 2 + 3 + ... + n

1) Discover a pattern for recursion:
 sum(n) = (1 + 2 + ...+ n-1) + n = sum(n-1) + n

2) Does recursion provide insight and simplify?
 No -- a loop is easier to understand.

3) base case: sum(n) = 0 for any n <= 0.
Note: to guarantee recursion will always stop we need to
consider case n < 0, too! Not just n == 0.
If n < 0 either throw exception or return 0.

4) Guarantee Termination? Yes - each time we call sum(n-1)
so parameter value is decreasing sum(3) -> sum(2) -> ...
Parameter value (n) must eventually be <= 0.

Recursion using Helper Function

 For some problems recursion is simpler if we define a
special function for the recursive call.
This is sometimes called a "helper function".

Example: sum elements of an array

double sum(double [] a) {

 int n = a.length - 1;
 return a[n] + (sum of a[0] ... a[n-1]);

}

Array sum Helper Function

sumTo() Helper Function sums part of the array.

/** Sum elements a[0] + ... + a[lastIndex] */
double sumTo(double a[], int lastIndex)
{
 // base case
 if (lastIndex < 0) return 0.0;
 // recursive case
 return a[lastIndex] + sumTo(a,lastIndex-1);
}

/** sum double[] array using recursion. */
double sum(double a[]) {
 // use HELPER FUNCTION to sum part of array
 return sumTo(a, a.length-1);
}

A different base case

What do you think of this helper function?

/** Sum elements a[0] + ... + a[lastIndex] */
double sumTo(double a[], int lastIndex)
{
 // base case
 if (lastIndex == 0) return a[0];
 // recursive case
 return a[lastIndex] + sumTo(a,lastIndex-1);
}

Can you think of any case where this may fail?

Learn more about Helper Functions

Big Java, Chapter 13 (Recursion) has a section on helper
methods.

Recursion uses more memory

 We can easily sum 1 to 1,000,000,000 using a loop.
but recursion will fail with "out of memory" error.

 Why?
 each function call creates a stack frame to store

information about the invocation (parameters, local
vars, saved registers) and return value.

 The stack frames consume memory on the "stack".
 Eventually, recursive calls may fill all the stack space.

 For the curious: read about "tail recursion"
 avoids creating stack frames in special cases

References

Big Java, Chapter 13 Recursion.

http://codingbat.com - programming problems using
recursion. First set is easy, second set is more
challenging and fun.

Recursion to Compute
Permutations

Extra slides - not required.

This is a harder but practical example.

 Recursion greatly simplifies the problem.

An Iterator makes it more efficient.

Recursion to Compute Permutations

Problem: output all permutations of a group of letters.

How could you apply recursion to compute permutations?

Example: compute all permutations of "a b c d".

a b c d

a b d c

a c b d

a c d b

a d b c

a d c b

"a" first:

b a c d

b a d c

b c a d

b c d a

b d a c

b d c a

"b" first:

c a b d

c a d b

c b a d

c b d a

c d a b

c d b a

"c" first:

d a b c

d a c b

d b a c

d b c a

d c a b

d c b a

"d" first:

Permute
"b c d"

Permute
"a c d"

Permute
"a b d"

Permute
"a b c"

Recursion to Compute Permutations

How could you apply recursion to compute permutations?

Think about how you would solve the problem yourself....

To Permute "a b c d":

1. put "a" first:

a b c d

a b d c

a c b d

a c d b

a d b c

a d c b

Permute "b c d" b

b

c

c

d

d

put "b" first
Permute "c d" c d

d c
put "c" first
Permute "b d" b d

d b
put "d" first
Permute "b c" b c

c b

2. put "b" first:

b a c d

b . . .

Permute "a c d" a

a

put "a" first
Permute "c d"

etc...

Designing a Permutation Class

Each Permutation object contains another permutation object, which
it uses to compute permutations of a subnet of the data.

head = "a"

+

new

Permutation("bcd")

Permutation("abcd")

Permutation("bcd")

head = "b"

+

new

Permutation("cd")

Permutation("cd")

Each object chooses a head,
then creates a Permutation
object to handle the other
letters.

Special Issues for this Problem

 In many recursion problems the work is done silently.

Example: finding a Knight Tour, counting nodes in a
true.

 Other problems require output at each step

Example: get the permutations one by one

Defining a Permutation Class

To design a class, ask yourself:
 what behavior should a Permutation object have?
 what state is necessary to perform this behavior?

There may be many, many permutations of letters.

Instead of computing and storing them all...

let's use an Iterator

 - produce and return the permutations one at a time

Permutation
symbols to permute

"abcd"

while (hasNext())

 get next() permutation
+ hasNext() : bool

+ next() : String

Defining a Permutation Class (2)

Pseudo-code for our Permutation program might look like this:

// create a Permutation object and tell it what to permute
Permutation me = new Permutation("abcd");

// now print all the permutations, one per line
while (me.hasNext())

System.out.println(me.next());

// wasn't that easy ?

Defining a Permutation Class (3)

Now, what does a Permutation object need to know to perform this
behavior? A permutation object needs...

 the chars in the String to permute
 keep track of which character has been chosen as the first

character of permutation.
 another permutation object that is responsible to permute the

remaining characters (here is where we use recursion).

Permutation
- theString: String
- currentIndex: int
- currentChar: char
- tail: Permutation
+ hasNext() : boolean
+ next() : String

Defining a Permutation Class (4)

Using the UML class diagram, we can start to implement the
Permutation class

/** constructor for a new Permutation.
 * @param text to permutate. Must contain at least one
 * character.
 */
public Permutation(String text) {
 if (text == null) throw new
 IllegalArgumentException("Must not be null");
 theString = text;
 currentIndex = 0;
 currentChar = text.charAt(currentIndex);
 // create a Permutation object for recursion
 String tailString = makeTailString(currentIndex);
 tail = new Permutation(tailString);
}

Method to create tailString

After we choose a character to be first element, we need to create a
new String containing all the other characters.

/**
 * Create a new string by removing the character at
 * the given index.
 * @param index is index of char to remove from string
 * @return a new string with one character removed
 */
private String makeTailString(int index) {
 String therest = theString.substring(0, index)

+ theString.substring(index+1);
 return therest;
}

Permutation Iterator: hasNext()

We need to define hasNext() to check for more permutations.

/** @return true if there are more permutations */
public String hasNext() {

return true if one of these is true:
(1) tail has more permutations
If (1) is false then...
(2) return true if firstChar can be advanced to
 another character of the String. In this case,
 also perform this operation. Note that you
 must change the tail, too.

When you implement this, you may find some code is duplicated in
hasNext() and next(). Eliminate duplicate code.
Obviously hasNext() cannot call next() [why?],
Rewrite next() so that it calls hasNext().
The next() method will become very simple.

Define the Iterator

In iterators, hasNext() usually does most of the work.

char c = theString.charAt(startChar);
if (tail.hasNext())

return c + tail.next();
// returns: abcd, abdc, acbd, acdb, ...

... actually, your code is more complex than this

// if no more permutations of the tail, then we
// must choose a new startChar (and a new tail)
startChar++; // choose a new first character
char c = theString.charAt(startChar);
// construct a new tailString and a new tail object
tailString = theString.substring(0, startChar)

+ theString.substring(startChar+1);
tail = new Permutation(tailString);

Permutation Iterator: next()

We need to define next() to implement the iterator

/** return the next permutation of this String, if any */
public String next() {

if (tail.hasNext())
// return firstChar followed by next
// permutation from our tail permutation

 return startChar + tail.next() ;
// otherwise, move thisChar to the next character
firstChar++;

// TO DO: check that we have reached end of string

// TO DO: construct a new tail String
tailString = ...;
tail = new Permutation(tailString);
return theString.charAt(thisChar)

+ tail.getNextPermutation();

Identify the Base Case

Base case:

1. theString contains 0 or 1 characters (tailString
is empty).

2. when currentIndex is the last character in
theString, what is the tail?

3.

Ensuring Termination

 Will this algorithm terminate?
 In the loop, hasNext() is called. So, will hasNext()

eventually return false?
 Notice that the permutation printed at each iteration is

the characters at positions this.firstChar,
tail.firstChar, tail.tail.firstChar, ...

 hasNext() should check the value of firstChar.
 Hence, we should ensure that thisChar or tail.thisChar

or tail.tail.thisChar, etc..., is incremented each time
next() is used.

Combinations

 Computing combinations of objects, say "4 choose 2"
is similar to permutations.

 Recursion is easier for combinations.
 Example: compute call combinations of "4 choose 3".

1. select "1" as first element

1.1 print all combinations of "3 choose 2" using numbers 2 - 4.

1 2 3

1 2 4

1 3 4

"2-4 choose 2" 2

2

3

4

"3-4 choose 1" 3

4

"4-4 choose 1"
3

"5-4 ch. 1"
none

A recursion-friendly Combinatorial

 We want to define a Combinatorial class in a way that is
conducive to recursion.

 Look at the way you would solve the problem by hand.
 At each step you look for a Combinatorial of n numbers

between startVal and endVal.
 Think of a constructor:

 Combinatorial(how_many, startVal, endVal)

Combinatorial(3, 1, 4) Combinatorial(2, 2, 4) Combinatorial(1,3,4)

1 2 3

1 2 4

1 3 4

etc...

"2-4 choose 2" 2

2

etc...

"3-4 choose 1" 3

4

"1-4 choose 3"

Combinatorial: identify behavior

 Combinatorial.hasNext():
return true if there are more combinations

 Combinatorial.next():
return string representation of next Combination.

1. select "1" as first element.

1.1 Combinatorial theRest = new Combinatorial(2, 2, 4);

1.2 while (theRest.hasNext())

 println "1" + theRest.next();

2. then what?

1 2 3

1 2 4

1 3 4

"2-4 choose 2" 2

2

"3-4 choose 1" 3

4

"1-4 choose 3"

Knight Tour

Find a sequence of moves in chess so that a knight
visits every square on chess board exactly once.

Recursion greatly simplifies the problem.

This example uses 2 special features:

(a) backtracking - undo a failed path

(b) shared state - info shared between recursive calls

Knight Tour

 Describe the problem.
 This is an example of recursion with backtracking.
 For backtracking to work you need:

 a way to go back to a previous state,
 it usually also involves a shared state.

 "shared" data that is used by all levels of the
recursion process

 for Knight Tour, the shared information is the chess
board containing list of occupied squares.

Backtracking: when an attempted solution fails, go back to a
previous state (back track) and try another path to a solution

Knight Tour

 How would you solve the knight tour problem yourself?

1. choose first move and mark it on chess board.

1.1 choose second move and mark it on chess board.

1.1.1 choose third move and mark it.

 ...etc...

 if fails, then erase the last move(s) and try again.

 ...etc...

 if fails, then erase 3rd move and try a different sequence.

 ...etc...

 if fails, then erase 2nd move and try a different sequence.

Knight Tour: identify behavior

 canMoveTo(x, y) - true if position (x,y) is valid and
you haven't visited their yet.

 moveTo(x, y) - move to a new square and label it
using the current sequence number (1, 2, 3, ...)

 unmoveTo(x, y) - retract a move: unlabel the square
 isBoardFull() - test whether every square on the board

has been visited (labeled) yet.
 knightTour(x, y) - attempt to tour the chess board

starting at position (x,y); any squares which have
already been labeled are included in the tour. That is,
you can't move to those squares again.

 knightTour(x, y) is how we implement recursion!

Knight Tour: implement recursion

 how to recursively traverse the board?

public boolean knightTour(int x, int y) {
if (! canMoveTo(x,y)) return false; // square already visited
moveTo(x, y); // add this square to the knight tour
// have we toured the entire board?
if (isBoardFull()) return true;
// Otherwise, try to continue the knight tour.
// Try all 8 possible moves (use an array and loop is better)
if (knightTour(x+2, y+1)) return true; // success!
if (knightTour(x+1, y+2)) return true;
..etc... // try all 8 possible moves.
// if all moves fail, then unlabel this square
unmoveTo(x, y);
return false; // failed

}

Knight Tour: guarantee termination

Can we guarantee the recursive calls will terminate?
 at each level of recursion an additional square is added

to the knight tour (moveTo(x,y)) or failure returned
 each new move is tried only once.
 therefore, eventually either (i) no move is possible, or

(ii) all squares are occupied.

public boolean knightTour(int x, int y) {
if (! canMoveTo(x,y)) return false; // FAILS is no move
moveTo(x, y);
// have we toured the entire board?
if (isBoardFull()) return true; // SUCCESS!!
...etc...

Knight Tour: identify state

 What do we need to "remember" while trying a knight tour?
 the current position is a parameter to the knightTour() method,

so it does not need to be a class attribute.
 what we need to remember is the state of the chess board -- its

size and what squares have been visited.
 let theBoard[i][j] = n > 0 if (i,j) visited at move n

= 0 if (i,j) not yet visited

// attributes (state variables)
private int boardSize; // the board size
private int[][] theBoard; // the chess board, a 2-D array
private int sequenceNum; // number of squares visited, also

 // used to label the next square

Knight Tour: build the class

public class ChessBoard {
// state variables
private int boardSize; // the board size
private int[][] theBoard; // the chess board
private int sequenceNum; // number of squares

visited
public ChessBoard(int size) {

if (size < 1) /* ERROR */ System.exit(0);
boardSize = size;
theBoard = new int[size][size];
sequenceNum = 0;
// set all elements of theBoard[][] to 0.

}
public boolean knightTour(int x, int y) { ... }
public boolean canMoveTo(int x, int y) { ... }
public void moveTo(int x, int y) { ... }
public void unmoveTo(int x, int y) { theBoard(x,y) =

0; }

Knight Tour: starting the tour

public class ChessBoard {
// define attributes (state variables)
...
// define methods
...
public static void main(String [] args) {

ChessBoard board = new ChessBoard(5);
// start at a corner
if (board.knightTour(0, 0))
{ System.out.println("Found a tour!");

board.printBoard();
}

 perform the knight tour using the main() method.
 create a ChessBoard object and call knightTour()

Self-sequencing the Knight Tour

 the ChessBoard object keeps track of sequence numbers so you
don't have to

 initially, sequenceNum = 0 (no moves yet)
 each time moveTo() a square, increment sequenceNum
 each time unmoveTo() a square, decrease sequenceNum

public void moveTo(int x, int y) {
sequenceNum++;
theBoard[x][y] = sequenceNum;

}
public void unmoveTo(int x, int y) {

sequenceNum--;
theBoard[x][y] = 0;

}

Checking for feasible moves

 canMoveTo(x, y) checks for feasible moves. Doing bounds
checking here makes the rest of the program simpler.

public boolean canMoveTo(int x, int y) {
// bounds checking
if (x < 0 || x >= boardSize) return false;
if (y < 0 || y >= boardSize) return false;
// return true if board at (x,y) is unoccupied (0)
return theBoard[x][y] == 0 ;

}

KnightTour: modification for efficiency

 canMoveTo() and moveTo() are always called as a
pair

public boolean knightTour(int x, int y) {
if (! canMoveTo(x,y)) return false; // square already visited
moveTo(x, y); // add this square to the knight tour
...etc...

 to reduce function calls and make the program faster,
combine canMoveTo() and moveTo() into one:
moveTo(x,y) returns true if a move succeeds

public boolean knightTour(int x, int y) {
if (! moveTo(x,y)) return false; // square already visited
...etc...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

