

Threads in Java

James Brucker

A Thread is a single flow of control

statement1

statement2

read something

statement4

Each statement must
finish before next
one is executed.

This is the way our
console-based
programs run.

A Program can create multiple threads

statement1

statement2

read something

statement4

Threads execute independently. They are not synchronized.

statement1b

statement2b

statement3b

thread2.start()

thread1.start()

Why Use Threads?

 Perform tasks in parallel

 connection to database

 I/O operations

 long-running computations (can be in parallel)

 Prevent user interface from "freezing"

 UI remains responsive while work is being done.

 Android requires responsive UI... or it will kill you!

 AsyncTask class for background tasks.

Basic way to create a Thread

Use the Thread class. There are 2 ways:

1. extend Thread class and override run()

public class PrompterThread extends Thread {
private String message;

 public Prompter(String message) {
 this.message = message;
 }

 /** the work we want to perform */
 public void run() {
 System.out.println(message);

}

Basic way to create a Thread

2. Define class that implements Runnable.
Put an instance of this Runnable in a Thread.

public class Prompter implements Runnable {
private String message;

 public Prompter(String message) {
 this.message = message;
 }
 /** the work we want to perform */
 public void run() {
 System.out.println(message);

}
}
Thread promptThread = new Thread(new Prompter());
promptThread.start();

Running a Thread

Call the start() method of Thread.

It runs in a separate thread and returns control immediately

// Method 1. use a subclass of Thread
Thread thread1 = new PrompterThread("Hello");
thread1.start();

// Method 2. use a Runnable and wrap in a Thread
Runnable prompter = new Prompter("Hello");
Thread thread2 = new Thread(prompter);
thread2.start();

Sequence Diagram

Demo

1. Hello and Goodbye threads.

 Say "Hello", "and", "Goodbye" in separate threads,
wait 500ms, repeat.

 ... the messages are not always synchronized.

 Note:

 if "main" method quits without waiting for

 threads or killing them, they will keep running,

 even if console window is closed.

Waiting for threads to finish

 After Thread.start() control returns immediately.
 To wait for another thread to finish, use join.

public static void main(String[] args) {
 Thread thread1 =
 new Thread(new Greeter("Hello"));

 thread1.start();
 try {
 thread1.join();
 } catch (InterruptedException ie) {
 // something interrupted the thread
 // while we were waiting
 }
}

InterruptedException

A Thread can be interrupted by calling thread.interrupt().

If the thread is busy, waiting, or sleeping then an
InterruptedException is thrown in the thread.

 try {
 Thread.sleep(2000); // time in millisec
 } catch (InterruptedException ie) {
 // something invoked interrupt() while
 // we were sleeping!
 }

Checking for Interruptions

If your thread might be interrupted, you can check for it
using Thread.interrupted()

class Downloader implements Runnable {
 public void run() {
 // read a big file into buffer
 while((size=in.read(buffer)) > 0) {
 // check for interruption
 if (Thread.interrupted()) {
 // close streams and return
 in.close();
 return;
 }
 // otherwise, process the buffer

Thread class

Thread

currentThread(): Thread

interrupt(): void

interrupted(): boolean

getName(): String

sleep(millisec: long): void

many more methods

Interrupt Demo

In the "Hello and Goodbye" demo modify main method:

when user presses ENTER, interrupt the greeter threads.

Use:

thread.interrupt() - interrupt thread

Impatient Demo

Write an impatient greeter:

Prompt user his name and print "Hello, username."

but don't wait more than 5 seconds for a reply.

Use a separate thread to get the user's name.

thread.join(timeout) - wait for thread at most
timeout millisecs

thread.interrupt() - interrupt thread

thread.destroy() - doesn't

Demo

1. "main" waits for threads to finish.

2. In Hello / Goodbye, give each thread a name.

 new Thread(String name)

 new Thread(Runnable task, String name)

2. In each thread, get its name and print it.

Use Thread.currentThread() and thread.getName().

Thread Managers and Thread Pools

For most uses, you should use one of these:

Timer - run a task at specified time or frequency

ExecutorService

 - manage one or more threads (called a thread pool).

 - reuse threads (efficient memory use).

 - can also run Callable tasks (return a value in future)

 - shutdown or cancel tasks

Demo

1. Rewrite ImpatientGreeter to use ExecutorService:

ExecutorService executor =

 Executors.newSingleThreadExecutor();

executor.submit(runnable);

wait for thread:

 executor.awaitTermination(5, TimeUnit.SECONDS)

kill threads: executor.shutdownNow()

Demo

2. Rewrite Hello / Goodbye to use Timer.

timer.schedule(TimerTask, long delay, long period)

timer.scheduleAtFixedRate(TimerTask, delay, period)

ExecutorService

Defines several kinds of thread pools.

Example:

You want to run some tasks using threads, but use at
most 4 theads at one time (to avoid task switching).

final int MAX_THREADS = 4;
ExecutorService executor =
 Executors.newFixedThreadPool(MAX_THREADS);

// add tasks to queue for execution
executor.execute(runnable1);
executor.execute(runnable2);
 . . .
executor.execute(runnable10);

Protected Blocks of Code

When multiple threads access the same object, or same
memory, what can go wrong?

What if two threads try to change some memory at the
same time?

Thread-safe classes

StringBuffer - thread safe (OK for 2 threads to share)

StringBuilder - not thread sale

AtomicInteger, AtomicLong, etc. - thread safe Integer,
Long, etc.

"synchronized" methods

If a method is "synchronized" then one one thread can
execute it at a time. Other threads must wait.

public synchronized List withdraw(double amount) {
 // only one thread can execute this method
 // at any time. Other threads must wait.

Problem: synchronized methods are slooooow.

References

The Java Tutorial:
https://docs.oracle.com/javase/tutorial

Threads & Executors Tutorial (Winterbe blog)

 http://winterbe.com/posts/2015/04/07/java8-
concurrency-tutorial-thread-executor-examples/

 This is a really good blog for Java! Have a look.

Concurrency (general)

https://docs.oracle.com/javase/tutorial/essential/concurr
ency/index.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

