
Programming with State Machines Page 1

Programming with State Machines

Some kinds of objects have a definite state that changes the way they behave. Examples are a
stopwatch, a digital alarm clock, a calculator, and an ATM machine.

Example: A stopwatch with 2 buttons: StartStop and Hold. Pressing StartStop
toggles between running and stopped. Press Hold while stopwatch is running freezes
the display time but the stopwatch is still running. Pressing the Hold button when
watch is stopped does nothing. Pressing StartStop while in Hold stops the watch and
exits Hold state.

Now we will describe how the system behaves as a State Machine.

Identify States

This stop watch has 3 states: STOPPED, RUNNING, and HOLD.

Events

The next step is to identify the events that cause the stopwatch to change state. Events can be external
(someone presses a button) or internal ("alarm time reached" or "finished printing receipt").

The events for this stopwatch are:

StartStop Pressed

Hold Pressed

Actions and Activity

Some state machines perform an action when they change state. For example, when a stopwatch
changes from STOPPED to RUNNING, it starts the timer.

Actions are something the component does in response to an event, or as part of the response. An
action is something that is done instantaneously or takes very little time. In contrast, an activity is
some behavior that is performed for a longer time, e.g. while the component is in a state.

In the stopwatch, "starttime = current time" or "compute elapsed time" are actions – they effectively
take no time to perform. "Update display (every millisec)" is an activity.

Draw a State Machine Diagram

A UML State Machine Diagram is a visual representation of the states, events, actions, and activities.
The state machine diagram for a stopwatch is:

A state machine can perform an action as soon as it enters a state or just before leaving a state. If this
action is always performed, show it as part of the state using notation like this:

RUNNINGSTOPPED

HOLD

StartStop / startTime = getTime()

StartStop / compute elapsed time

StartStop

Hold

HoldEvent / Action

STOPPED

entry/ stop timer
exit/ reset

Programming with State Machines Page 2

A state machine may perform an activity during the whole time it is in the state. You can show this
activity using "do / activity" in a state box:

Guard Conditions
A State Transition may have a test condition that must be true in order for the transition to occur. These
are call guard conditions. Guard conditions are boolean valued (true/false) and shown inside [square
brackets]. You can use words to describe a guard condition.

Consider a door with a sensor that detects if an object is in the doorway. The door has a button which
triggers a CloseDoor event. When the CloseDoor event occurs, the sensor test "sensor clear" (nothing
in the doorway) must be true in order to close the door. The guard condition is "sensor clear".

As shown above, the UML notation for a transition with a guard condition is:

Event [guard condition] / Action

The Event is required; the guard condition and action are optional.

RUNNING

do/ update display

DOOR CLOSEDDOOR OPEN
CloseDoor [sensor clear] / closeDoor()

Programming with State Machines Page 3

Programming a State Machine Model
We can implement states in code in two different ways:

1. Use a simple variable to indicate the state (int, char, or enum) and a switch statement in the event
handlers to describe what to do in each state. This is the C language style for coding a state machine.

2. Use an object for state. The state object encapsulates all state-dependent behavior. This is the basis
for the State Design Pattern.

Technique 1: Use a State variable with Switch Statement

Use a primitive variable or enum type to keep track of the state, and a switch block to handle
behavior for each state.

Define named constants for the different state values.

final int STOPPED = 0;
final int RUNNING = 1;
final int HOLD = 2;
private int state ; // variable for the current state

Instead of int, you can use an enum for states. You can define the enum inside the class that uses it:

 enum State { STOPPED, RUNNING, HOLD };

 private State state; // the current state, using enum type

Typically you will write one method to handle each event:

 /** This method handles the "StartStop" button event. */
public void handleStartStop() {

switch (state) {
case STOPPED:

starttime = gettime(); // record start time
state = RUNNING; // change the state
break;

case RUNNING:
case HOLD:

elapsed = gettime() - starttime;
state = STOPPED; // change the state
break;

}

Technique 2: States as Objects with Delegated Behavior
The O-O approach to implementing a state machine is to define one object for each state and delegate
behavior to the state object. This is the State Design Pattern.

There are 4 steps to implementing this pattern.

2.1 Define an interface for all the behavior that depends on state. The context will delegate state-
dependent behavior to the state objects (but perform other behavior itself).

public interface State {
public void handleStartStop();
public void handleHold();
public void enterState(); // optional
public void leaveState(); // optional

}

Programming with State Machines Page 4
The methods enterState() and leaveState() are optional. They provide a way to implement
the "enter/" and "exit/" actions of every state.

2.2 Implement the interface for each State. Create one class for each state. This class will handle the
state-dependent behavior.

Since the states are performing behavior for the StopWatch (in this example), they need a reference to
the StopWatch. Typically, you give the state objects a reference to the context via a constructor
parameter.

Another (simpler) way is to define the states as inner classes (classes inside the StopWatch class), so
they automatically have access to the Stopwatch attributes (Stopwatch is the "outer" class).

In this example, we supply a reference to the StopWatch as a constructor parameter:

public class StoppedState implements State {
private StopWatch watch;

public RunningState(StopWatch watch) {
this.watch = watch;

}
public void handleStartStop() {

watch.starttime = System.currentTimeMillis(); // do work
watch.setState(watch.runningState);

}
public void handleHold() {

// ignore hold in stopped state
}
public void enterState() {

watch.stoptime = System.nanoTime();
}

2.3 In the context (StopWatch) define a state attribute to keep track of the current state:

public class StopWatch {

private State state;

 Don't forget to initialize the state !

2.4 Methods of the the StopWatch that depend on state will delegate behavior to the state object:

public void handleStartStop() {
state.handleStartStop();

}
public void handleHold() {

state.handleHold();
}

The state variable always refers to the current State, so the current State object receives the
method calls. The Stopwatch is changing how it behaves (by delegating to different State objects)
without using "if" or "switch".

2.5 Finally, create one State object for each state and provide a setState() method for changing the
state. Since you only need one object for each actual state, you can define them as final references.

public class StopWatch {
public final State runningState = new RunningState(this);
public final State holdState = new HoldState(this);
public final State stoppedState = new StoppedState(this);
/** variable for referring to the current state */
private State state;

Programming with State Machines Page 5

/** Change the state of the stopwatrch. */
public void setState(State newstate) {

state.leaveState();
state = newstate;
state.enterState();

}

When To Use O-O Approach?

Using the simple state variable approach using a switch statement is efficient. When the behavior is
simple and not too many states (as in counting syllable in a word) the simple approach works well and
may be faster.

When states are more complex or there are many methods that depend on state, the O-O approach can
simplify your code and reduce the chance of overlooking state-dependent behavior.

If many methods depend on state then the simple approach will have a lot of switch statements spread
across many methods. This increases the chance of error and makes the code harder to maintain.

References
For the object-oriented way of using states, see these two sources:

 Wikipedia, http://en.wikipedia.org/wiki/UML_state_machine examples of how to use a State
Machine.

 Wikipedia, http://en.wikipedia.org/wiki/State_diagram how to read a State Diagram.

 "Programming Without Ifs Challenge" at http://programmingwithoutifs.blogspot.com.

 Head First Design Patterns, Chapter 10 "The State of Things". Humorous example.

http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/UML_state_machine

	Programming with State Machines
	Identify States
	Events
	Actions and Activity
	Draw a State Machine Diagram
	Guard Conditions
	Programming a State Machine Model
	Technique 1: Use a State variable with Switch Statement
	Technique 2: States as Objects with Delegated Behavior
	When To Use O-O Approach?
	References

