
Chapter 10

State Machine Diagrams

State machine diagrams are a familiar technique to describe the behavior of a
System. Various forms of State diagrams haue been around since the 1960s and
the earliest object-oriented techniques adopted them to show behavior. In
object-oriented approaches, you draw a State machine diagram for a single dass
to show the lifetime behavior of a single object.

Whenever people write about State machines, the examples are inevitably
cruise controls or vending machines . As I'm a little bored wich them, 1 decided
to use a controller for a secret panel in a Gothic castle. In this castle, 1 wanz to
keep my valuables in a safe that's hard to find . So to reveal the lock to the safe,
1 haue to remove a strategic candle from its holder, but this will reveal the lock
only while the door is closed . Once 1 can See the lock, I can insert my key to
open the safe . For extra safety, 1 make sure that 1 can open the safe only if 1
replace the candle first . If a thief neglects this precaution, I'll unleash a nasty
monster to devour him .

Figure 10 .1 shows a State machine diagram of the controller dass that directs
my unusual security system .The State diagram Starts wich the State of the con-
troller object when it's created : in Figure 10.1, the Wait State. The diagram indi-
cates this wich initial pseudostate, which is not a State but has an arrow that
points to the initial State .

The diagram shows that the controller can be in three states : Wait, Lock, and
Open. The diagram also gives the rules by which the controller changes from
State to State . These rules are in the form of transitions : the lines that connect
the states .

The transition indicates a movement from one State to another. Each transition
has a Label that comes in three parts : trigger-signature [guard]/activity . All the parts
are optional. The trigger-signature is usually a single event that triggers a potential
change of State . The guard, if present, is a Boolean condition that muss be true for
the transition to be Laken . The acti vi ty is some behavior that's executed during the
transition. lt may be any behavioral expression . The full form of a trigger-signature

107



108 CHAPTER 10 STATE MACHINE DIAGRAMS

Wait

Open

Lock

O

transition

key turned [candle in] / open safe

candle removed [door closed] / reveal lock

initial pseudostate

state

Figure 10 .1 A simple state machine diagram

may include multiple events and parameters . So in Figure 10.1, you read the out-
ward transition from the Wait state as "In the Wait state if the candle is removed
providing the door is open, you reveal the lock and move to the Lock state ."

All three parts to a transition are optional . A missing activity indicates that
you don't do anything during the transition . A missing guard indicates that you
always take the transition if the event occurs . A missing trigger-signature is rare
but does occur. lt indicates that you take the transition immediately, which you
see mostly wich activity states, which I'll come to in a moment .

When an event occurs in a state, you can take only one transition out of it .
So if you use multiple transitions wich the saure event, as in the Lock state of
Figure 10 .1, the guards muss be mutually exclusive . If an event occurs and no
transition is valid-for example, a safe-closed event in the Wait state or a candle-
removed event wich the door closed-the event is ignored .

The final state indicates that the state machine is completed, implying the
deletion of the controller object . Thus, if someone should be so careless as to
fall for my trap, the controller object terminates, so 1 would need to put the rab-
bit in its cage, mop the floor, and rebnot the System .

Remember that state machines can Show only what the object directly
observes or activates . So although you might expect me to add or remove things

safe closed

key turned [candle out] / release killer rabbit

final state



Internal Activities

States can react to events without transition, using internal activities : putting
the event, guard, and activity inside the state box itself .

Figure 10 .2 shows a state wich internal activities of the character and help
events, as you might find an a UI text field . An internal activity is similar to a
seif-transition : a transition that loops back to the saure state . The Syntax für
internal activities follows the saure logic für event, guard, and procedure .

Figure 10.2 also shows two special activities : the entry and exit activities . The
entry activity is executed whenever you enter a states the exit activity, whenever
you leave. However, internal activities do not trigger the entry and exit activities ;
that is the difference between internal activities and seif-transitions .

Typing

entry/highlight all
exit/ update tield
character/ handle character
help [verbose]/ open help page
help [quiet]/ update status bar

Figure 10.2 Internal events shown with the typing state of a text Field

AcTIvITY STATES

from the safe when it's open, 1 don't put that an the state diagram, because the
Controller cannot teil .

When developers talk about objects, they often refer to the state of the
objects to mean the combination of all the data in the fields of the objects .
However, the state in a state machine diagram is a more abstract notion of
states essentially, different states imply a different way of reacting to events .

Activity States

In the states I've described so far, the object is quiet and waiting für the next
event before it does something . However, you can haue states in which the
object is Boing some ongoing work .

109



CHAPTER 10 STATE MACHINE DIAGRAMS

Update
Hardware
Window

search

Figure 10 .3 A state with an activity

The Searching state in Figure 10 .3 is such an activity states The ongoing
activity is marked wich the do/; hence the term do-activity . Once the search is
completed, any transitions without an activity, such as the one to display new
hardware, are taken . If the cancel event occurs during the activity, the do-activity
is unceremoniously halted, and we go back to the Update Hardware Window
state .

Both do-activities and regular activities represent carrying out some behavior .
The critical difference between the two is that regular activities occur "instanta-
neously" and cannot be interrupted by regular events, while do-activities can
take finite time and can be interrupted, as in Figure 10 .3 . Instantaneous will
mean different things for different System ; for hard real-time Systems, it might be
a few machine instructions, but for desktop Software might be several seconds .

UML 1 used the term action for regular activities and used activity only for
do-activities .

activity

Searching

do/ search tor new hardware

cancel

Display New
Hardware
Window

Superstates

Often, you'll find that several states share common transitions and internal
activities . In these Gases, you can make them substates and move the shared
behavior into a superstate, as in Figure 10 .4. Without the superstate, you would
haue to draw a cancel transition for all three states within the Enter Connection
Details state .



.-
Enter Phone
Number

Concurrent States

States can be broken into several orthogonal state diagrams that run concur-
rently. Figure 10 .5 Shows a pathetically simple alarm dock that can plag either
CDs or the radio and Show either the current time or the alarm time .

The choices CD/radio and current/alarm time are orthogonal choices . If you
wanted to represent this wich a nonorthogonal state diagram, you would need a
messt' diagram that would get very muck out of hand should you wanz more
States. Separating out the two areas of behavior into separate state diagrams
makes it rauch clearer.

Figure 10.5 also includes a history pseudostate . This indicates that when the
dock is switched on, the radio/CD choice goes back to the state the dock was
in when it was turned off. The arrow from the history pseudostate indicates
what state to be in an the first time when there is no history .

Show Connections

new

next

back

Figure 10.4 Superstate with nested substates

cancel

Enter Connection Details

i

Choose Shared
or Solo

IMPLEMENTING STATE DIAGRAMS

next

back

saue

Enter Name

Implementing Stare Diagrams

A Stare diagram can be implemented in three main ways : nested switch, the
Stare pattern, and state tables . The most direct approach to handling a Stare

1!



CHAPTER 10 STATE MACHINE DIAGRAMS

time

history pseudostate

Display Current
Time

Playing Radio

Radio

an

Figure 10.5 Concurrent orthogonal states

diagram is a nested switch Statement, such as Figure 10 .6 . Although it's direct,
it's long-winded, even for this simple case . It's also very easy for this approach
to get out of control, so 1 don't like using it even for simple Gases .

The State pattern [Gang of Four] creates a hierarchy of state classes to handle
behavior of the states. Each state in the diagram has one state subdass . The
Controller has methods for each event, which simply forwards to the state dass .
The state diagram of Figure 10 .1 would yield an implementation indicated by
the classes of Figure 10 .7 .

The top of the hierarchy is an abstract dass that implements all the event-
handling methods to do nothing . For each concrete state, you simply override
the specific event methods für which that state has transitions .

The state table approach captures the state diagram Information as data . So
Figure 10.1 might end up represented in a table like Table 10 .1 . We then build
either an Interpreter that uses the state table at runtime or a Code generator that
generates classes based an the state table .

Obviously, the state table is more work to do once, but then you can use it
every time you haue a state problem to hold. A runtime state table can also be

On

concurrent boundary

'-

oft

off

Display Alarm
Time

Playing CD

CD

J

alarm



IMPLEMENTING STATE DIAGRAMS

public void HandleEvent (PanelEvent anEvent) {
switch (CurrentState) {
case PanelState .Open

switch (anEvent) {
case PanelEvent .SafeClosed
CurrentState = PanelState .Wait ;
break ;

break ;
case PanelState .Wait

switch (anEvent) {
case PanelEvent .CandleRemoved

if (isDoorOpen) {
Reveal Lock Q ;
CurrentState = PanelState .Lock ;

break ;

break ;
case PanelState .Lock

switch (anEvent) {
case PanelEvent .KeyTurned

if (isCandleIn) {
OpenSafeo ;
CurrentState = PanelState .Open ;

} else {
ReleaseKillerRabbit Q ;
CurrentState = PanelState .Final ;

break ;

break ;

Figure 10.6 A C# nested switch to handle the state transition from Figure 10 .1

modified without recompilation, which in some contexts is quite handy . The

state pattern is easier to put together when you need it, and although it needs a

new dass for each state, it's a Small amount of code to write in each case .

These implementations are pretty minimal, but they should give you an idea

of how to go about implementing state diagrams. In each case, implementing

state modeln leads to very boilerplate code, so it's usually best to use some form

of code generation to do it .

1!



CHAPTER 10 STATE MACHINE DIAGRAMS

Secret Panel Controller

changeStateTo (SecretPanelState)
handleCandIeRemoved
handleKeyTurned
handleSafeClosed

state .handleCandleRemoved

Wait Stare

handleCandIeRemoved

Secret Panel Stare

handleCandIeRemoved
handleKeyTurned
handleSafeClosed

Lock Stare Open Stare

handleKeyTurned

	

handleSafeClosedif (door open) {
reveaILock()
changeStateTo (LockState)

When to Use Stare Diagrams
Stare diagrams are good at describing the behavior of an object across several
use cases. Stare diagrams are not very good at describing behavior that involves
a number of objects collaborating . As such, it is useful to combine state dia-
grams wich other techniques . For instance, interaction diagrams (see Chapter 4)
are good at describing the behavior of several objects in a ringle use case, and
activity diagrams (see Chapter 11) are good at showing the general sequence of
activities for several objects and use cases .

Not everyone finds state diagrams natural . Keep an eye an how people are
working wich them. l t may be that your team does not find state diagrams use-

Figure 10 .7 A State pattern implementation for Figure 10 .1

Table 10.1 A State Table for Figure 10 .1

Source Stare Target Stare Event Guard Procedure

Wait Lock Candle removed Door open Reveal lock

Lock Open Key turned Candle in Open safe

Lock Final Key turned Candle out Release killer rabbit

Open Wait Safe closed



WHERE TO FIND OUT MORS

ful to its way of working . That is not a big problem ; as always, you should
remember to use the mix of techniques that works for you.

If you do use state diagrams, don't try to draw them for every dass in the
System . Although this approach is often used by high-ceremony completists, it
is almost always a waste of effort. Use state diagrams only für those classes that
exhibit interesting behavior, where building the state diagram helps you under-
stand what is going on . Many people find that UI and control objects haue the
kind of behavior that is useful to depict wich a state diagram .

Where to Find Out More
Both the User Guid'e [Booch, UML user] and the Reference Manual [Rum-
baugh, UML Reference] haue more information an state diagrams . Real-time
designers tend to use state models a lot, so it's no surprise that [Douglass]) has a
lot to say about state diagrams, including information an how to implement
them. [Martin] contains a very good chapter an the various ways of implement-
ing state diagrams .

y


